
Outline

Graph generalities

Graph processing

Storing the graph

Aside: Variable-length representations

Graph compression with instantaneous codes: BVGraph

BVGraph for general graphs: LLPA

Graph compression with Elias-Fano: EFGraph

Graph generalities

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).

Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration).

G is often dropped
from the indices, when clear from the context.

Graph generalities

Graph

A graph G = (VG ,EG) is defined by:

A set V = VG of nodes

A set E = EG ⊆ V × V of arcs (ordered pairs of nodes).

Other authors call these directed graphs (or digraphs, or networks).
Note that pairs of the form (x , x) (loops) are allowed (many
authors don’t take loop into consideration). G is often dropped
from the indices, when clear from the context.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Transpose graph

The transpose GT = (V ,ET) of G = (V ,E) is defined by:

ET = {(y , x) | (x , y) ∈ E}.

A graph G is symmetric iff G = GT .

We similarly define G s = (V ,E ∪ ET) (the symmetric closure of
G).

Undirected graphs can be safely identified with symmetric
graphs.

In an undirected graphs, nodes are often called vertices and
pairs of opposite arcs are called edges.

Graph generalities

Multigraphs and hypergraphs

In some applications, one may want more than one arc between
two nodes (i.e., that E is a multiset of pairs, instead of a set). We
call these generalization multigraphs.

In some other applications, E is not a set of pairs, but a set of
r -tuples. In this case, we talk of hypergraphs.

Graph generalities

Multigraphs and hypergraphs

In some applications, one may want more than one arc between
two nodes (i.e., that E is a multiset of pairs, instead of a set). We
call these generalization multigraphs.

In some other applications, E is not a set of pairs, but a set of
r -tuples. In this case, we talk of hypergraphs.

Graph generalities

Labels

A graph can be labelled on its nodes and/or on its arcs.
Node-labelling functions map nodes (or arcs) to a set of suitable
labels.

In the case of undirected graphs one usually requires that (x , y)
has the same label as (y , x), so that one can think of labels being
assigned to edges.
A special case of labelling is the assingnment of real values, that is
often called a weighting function (hence we call a graph
node-weighted or arc-weighted).

Graph generalities

Labels

A graph can be labelled on its nodes and/or on its arcs.
Node-labelling functions map nodes (or arcs) to a set of suitable
labels.
In the case of undirected graphs one usually requires that (x , y)
has the same label as (y , x), so that one can think of labels being
assigned to edges.

A special case of labelling is the assingnment of real values, that is
often called a weighting function (hence we call a graph
node-weighted or arc-weighted).

Graph generalities

Labels

A graph can be labelled on its nodes and/or on its arcs.
Node-labelling functions map nodes (or arcs) to a set of suitable
labels.
In the case of undirected graphs one usually requires that (x , y)
has the same label as (y , x), so that one can think of labels being
assigned to edges.
A special case of labelling is the assingnment of real values, that is
often called a weighting function (hence we call a graph
node-weighted or arc-weighted).

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Graphs everywhere. . .

Graphs (of some kind) pop up everywhere. Examples:

social networks, either directed (Twitter) or undirected
(Facebook)

biological systems (gene interaction networks, protein
networks)

web graphs

Internet autonomous systems

semantic networks, knowledge graphs

collaboration graphs

citation networks

. . .

Graph generalities

Sizes

These graphs may have a humongous number of vertices (not
rarely, they have billions of nodes!).

Typically, though, they are very sparse: A sparse graph is one with
O(n) arcs (instead of O(n2)).

Graph generalities

Sizes

These graphs may have a humongous number of vertices (not
rarely, they have billions of nodes!).
Typically, though, they are very sparse:

A sparse graph is one with
O(n) arcs (instead of O(n2)).

Graph generalities

Sizes

These graphs may have a humongous number of vertices (not
rarely, they have billions of nodes!).
Typically, though, they are very sparse: A sparse graph is one with
O(n) arcs (instead of O(n2)).

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Paths

A path in G is a sequence π = x0, x1, . . . , xk ∈ V such that
(xi , xi+1) ∈ E for all i = 0, . . . , k − 1. We say that:

π starts at node x0 (also called the source of π)

π ends at node xk (also called the target of π)

has length |π| = k

is simple if x0, . . . , xk−1 are all distinct

it is a cycle iff k > 0 and the source and target coincide.

if there is a path from x to y we say that y is reachable from x

if there is a cycle, G is called cyclic.

Graph generalities

Strongly connected components

Let x ≈ y iff there is a path from x to y and vice-versa. The
equivalence classes of ≈ are called the strongly connected
components (SCCs) of G . The SCCs of G s are called the weakly
connected components (WCCs) of G : in the case of a symmetric
graph, WCCs and SCCs coincide (and we just talk of “connected
components”).

Graph generalities

Strongly connected components

Let x ≈ y iff there is a path from x to y and vice-versa. The
equivalence classes of ≈ are called the strongly connected
components (SCCs) of G . The SCCs of G s are called the weakly
connected components (WCCs) of G : in the case of a symmetric
graph, WCCs and SCCs coincide (and we just talk of “connected
components”).

Graph generalities

Strongly connected components

The reduced graph G † is the graph whose nodes are the SCCs of
G , with an arc from [x] to [y] whenever there is a node x ′ ≈ x and
a node y ′ ≈ y with (x ′, y ′) ∈ E .

Theorem

G † is an acyclic graph.

Graph generalities

Strongly connected components

The reduced graph G † is the graph whose nodes are the SCCs of
G , with an arc from [x] to [y] whenever there is a node x ′ ≈ x and
a node y ′ ≈ y with (x ′, y ′) ∈ E .

Theorem

G † is an acyclic graph.

Graph generalities

Strongly connected components

The reduced graph G † is the graph whose nodes are the SCCs of
G , with an arc from [x] to [y] whenever there is a node x ′ ≈ x and
a node y ′ ≈ y with (x ′, y ′) ∈ E .

Theorem

G † is an acyclic graph.

Graph generalities

Neighborhoods and degrees

Given G = (V ,E) and x ∈ V , define:

N−G (x) = {y | (y , x) ∈ E} (in-neighborhood of x , predecessors
of x)

N+
G (x) = {y | (x , y) ∈ E} (out-neighborhood of x , successors

of x)

d−G (x) = |N−G (x)| (in-degree of x)

d+
G (x) = |N+

G (x)| (out-degree of x)

Graph generalities

Neighborhoods and degrees

Given G = (V ,E) and x ∈ V , define:

N−G (x) = {y | (y , x) ∈ E} (in-neighborhood of x , predecessors
of x)

N+
G (x) = {y | (x , y) ∈ E} (out-neighborhood of x , successors

of x)

d−G (x) = |N−G (x)| (in-degree of x)

d+
G (x) = |N+

G (x)| (out-degree of x)

Graph generalities

Neighborhoods and degrees

Given G = (V ,E) and x ∈ V , define:

N−G (x) = {y | (y , x) ∈ E} (in-neighborhood of x , predecessors
of x)

N+
G (x) = {y | (x , y) ∈ E} (out-neighborhood of x , successors

of x)

d−G (x) = |N−G (x)| (in-degree of x)

d+
G (x) = |N+

G (x)| (out-degree of x)

Graph generalities

Neighborhoods and degrees

Given G = (V ,E) and x ∈ V , define:

N−G (x) = {y | (y , x) ∈ E} (in-neighborhood of x , predecessors
of x)

N+
G (x) = {y | (x , y) ∈ E} (out-neighborhood of x , successors

of x)

d−G (x) = |N−G (x)| (in-degree of x)

d+
G (x) = |N+

G (x)| (out-degree of x)

Graph generalities

Neighborhoods and degrees

Given G = (V ,E) and x ∈ V , define:

N−G (x) = {y | (y , x) ∈ E} (in-neighborhood of x , predecessors
of x)

N+
G (x) = {y | (x , y) ∈ E} (out-neighborhood of x , successors

of x)

d−G (x) = |N−G (x)| (in-degree of x)

d+
G (x) = |N+

G (x)| (out-degree of x)

Graph generalities

(Local) clustering coefficient

Given G = (V ,E) and x ∈ V , define:

in-directed clustering coefficient of x :

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|

d−G (x)2

or, if loop are not allowed:

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|
d−G (x) · (d−G (x)− 1)

c+G (x) is defined similarly

for undirected loopless graphs:

cG (x) =
2|EG ∩ (NG (x)× NG (x)|

dG (x) · (dG (x)− 1)

Graph generalities

(Local) clustering coefficient

Given G = (V ,E) and x ∈ V , define:

in-directed clustering coefficient of x :

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|

d−G (x)2

or, if loop are not allowed:

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|
d−G (x) · (d−G (x)− 1)

c+G (x) is defined similarly

for undirected loopless graphs:

cG (x) =
2|EG ∩ (NG (x)× NG (x)|

dG (x) · (dG (x)− 1)

Graph generalities

(Local) clustering coefficient

Given G = (V ,E) and x ∈ V , define:

in-directed clustering coefficient of x :

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|

d−G (x)2

or, if loop are not allowed:

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|
d−G (x) · (d−G (x)− 1)

c+G (x) is defined similarly

for undirected loopless graphs:

cG (x) =
2|EG ∩ (NG (x)× NG (x)|

dG (x) · (dG (x)− 1)

Graph generalities

(Local) clustering coefficient

Given G = (V ,E) and x ∈ V , define:

in-directed clustering coefficient of x :

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|

d−G (x)2

or, if loop are not allowed:

c−G (x) =
|EG ∩ (N−G (x)× N−G (x)|
d−G (x) · (d−G (x)− 1)

c+G (x) is defined similarly

for undirected loopless graphs:

cG (x) =
2|EG ∩ (NG (x)× NG (x)|

dG (x) · (dG (x)− 1)

Graph generalities

Graph morphism

A graph morphism f : G → H is a function f : VG → VH such that
(x , y) ∈ EG if and only if (f (x), f (y)) ∈ EH .

A bijective graph morphism is called an isomorphism. If there
exists an isomorphism between G and H we say that G and H are
isomorphic, and write G ∼= H.

Graph generalities

Graph morphism

A graph morphism f : G → H is a function f : VG → VH such that
(x , y) ∈ EG if and only if (f (x), f (y)) ∈ EH .
A bijective graph morphism is called an isomorphism. If there
exists an isomorphism between G and H we say that G and H are
isomorphic, and write G ∼= H.

Graph generalities

Graph processing

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?

Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree

Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance

Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution

Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient

Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property is a function that associates a value to each
graph.

Binary graph properties

Is the graph planar?
Is the graph connected?

Scalar properties

Average degree
Average (shortest-path) distance
Average clustering coefficient

Distributions

Degree distribution
Distance distribution

Vector properties

Local clustering coefficient
Centrality (e.g., eccentricity)

Graph processing

Graph property

A graph property P is isomorphism-invariant iff

G ∼= H implies P(G) = P(H).

Properties that are not isomorphism-invariant are tricky (they
depend on the specific identity of nodes).
If we limit ourselves to isomorphism-invariant properties, we can
assume w.l.o.g. that VG = {0, 1, . . . , n − 1}.

Graph processing

Graph property

A graph property P is isomorphism-invariant iff

G ∼= H implies P(G) = P(H).

Properties that are not isomorphism-invariant are tricky (they
depend on the specific identity of nodes).

If we limit ourselves to isomorphism-invariant properties, we can
assume w.l.o.g. that VG = {0, 1, . . . , n − 1}.

Graph processing

Graph property

A graph property P is isomorphism-invariant iff

G ∼= H implies P(G) = P(H).

Properties that are not isomorphism-invariant are tricky (they
depend on the specific identity of nodes).
If we limit ourselves to isomorphism-invariant properties, we can
assume w.l.o.g. that VG = {0, 1, . . . , n − 1}.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)

G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)

G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)

if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Accessing a graph

If you store a graph G (in some way), you can access it through
different primitives, such as. . .

direct access queries:

G .arc(x , y) (is there an arc from x to y in G?)
G .d±(x) (what is the in/out-degree of x in G?)
G .N±(x) (enumerate the in/out-neighbors of x in G ; possibly
in order of id)

sequential access (a.k.a., streaming):

G .E (enumerate the arcs, possibly preserving the consecutivity
of in/out-neighborhoods)
if G .E can be called only once (or O(1) times), the access is
“streaming”.

Graph processing

Computing graph properties

Typical problem:

for a given property P

for a given access mode

write an algorithm that computes (or approximates, in some
sense) G 7→ P(G)

Graph processing

Computing graph properties

Typical problem:

for a given property P

for a given access mode

write an algorithm that computes (or approximates, in some
sense) G 7→ P(G)

Graph processing

Computing graph properties

Typical problem:

for a given property P

for a given access mode

write an algorithm that computes (or approximates, in some
sense) G 7→ P(G)

Graph processing

Computing graph properties

Typical problem:

for a given property P

for a given access mode

write an algorithm that computes (or approximates, in some
sense) G 7→ P(G)

Graph processing

Storing the graph

Storing the graph

What do we mean by. . .

. . . “storing the graph”?

Having a data structure that allows you, for a given node, to
know its successors.

If the graph is node-labelled (e.g., a web graph with URLs as
node labels): having a way to know which label corresponds
to a given node and vice versa.

Storing the graph

What do we mean by. . .

. . . “storing the graph”?

Having a data structure that allows you, for a given node, to
know its successors.

If the graph is node-labelled (e.g., a web graph with URLs as
node labels): having a way to know which label corresponds
to a given node and vice versa.

Storing the graph

What do we mean by. . .

. . . “storing the graph”?

Having a data structure that allows you, for a given node, to
know its successors.

If the graph is node-labelled (e.g., a web graph with URLs as
node labels): having a way to know which label corresponds
to a given node and vice versa.

Here: we only consider the former problem, not the latter!

Storing the graph

Information-theoretical lower bound

How much space do we need to store a graph with n nodes and m
arcs?

Not less than

log

(
n2

m

)
≈ m log

(
n2

m

)
+ O(m)

under the hypothesis that m = o(n2)

m log
(n
d

)
+ O(m)

where d = m/n is the average degree.
This means about log(n/d) + O(1) bits per arc. But complex
networks are NOT random graphs!.

Storing the graph

Information-theoretical lower bound

How much space do we need to store a graph with n nodes and m
arcs? Not less than

log

(
n2

m

)
≈ m log

(
n2

m

)
+ O(m)

under the hypothesis that m = o(n2)

m log
(n
d

)
+ O(m)

where d = m/n is the average degree.
This means about log(n/d) + O(1) bits per arc. But complex
networks are NOT random graphs!.

Storing the graph

Information-theoretical lower bound

How much space do we need to store a graph with n nodes and m
arcs? Not less than

log

(
n2

m

)
≈ m log

(
n2

m

)
+ O(m)

under the hypothesis that m = o(n2)

m log
(n
d

)
+ O(m)

where d = m/n is the average degree.

This means about log(n/d) + O(1) bits per arc. But complex
networks are NOT random graphs!.

Storing the graph

Information-theoretical lower bound

How much space do we need to store a graph with n nodes and m
arcs? Not less than

log

(
n2

m

)
≈ m log

(
n2

m

)
+ O(m)

under the hypothesis that m = o(n2)

m log
(n
d

)
+ O(m)

where d = m/n is the average degree.
This means about log(n/d) + O(1) bits per arc. But complex
networks are NOT random graphs!.

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (1)

Most popular naive representations for a graph G :

adjacency matrix: a n × n binary matrix G with Gxy = 1 iff
(x , y) ∈ EG .

Features:

it occupies n2 bits (i.e., n2/m = n2/nd = n/d bits per arc:
exponentially more than the information-theoretic lower bound
log n/d)

G .arc(x , y) takes constant time:

enumerating the neighborhoods takes time O(n)

scanning the graph sequentially takes time O(n2)

highly unsuitable for sparse graphs!

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive graph representations (2)

Second most popular naive representations for a graph G :

adjacency lists: one list per node, containing its successors (in
increasing order).

Features:

memory occupied: see below

G .arc(x , y) takes O(d) time

enumerating the neighborhoods takes time O(d)

scanning the graph sequentially takes time O(m)

Storing the graph

Naive representation

0 1 2 3 4 5 6 7 8 9 10 m−1

0 3 8 104 4offset

3 7 2 27 3 4 7 712 14 15succ

0 1 2 3 4 5

........

n−1

The offset vector tells, for each given node x , where the successor
list of x starts from. Implicitly, it also gives the degree of each
node.

Storing the graph

Naive representation

How much space does this representation take?

Successor array: m elements (arcs), each containing a node
(log n bits); with 32 bits, we can store up to 4 billion nodes
(half of it, if we don’t have unsigned types)

Offset array: n elements (nodes), each containing an index in
the successor array (logm bits); with 32 bits, we can store up
t 4 billion arcs.

Storing the graph

Naive representation

How much space does this representation take?

Successor array: m elements (arcs), each containing a node
(log n bits); with 32 bits, we can store up to 4 billion nodes
(half of it, if we don’t have unsigned types)

Offset array: n elements (nodes), each containing an index in
the successor array (logm bits); with 32 bits, we can store up
t 4 billion arcs.

Storing the graph

Naive representation

How much space does this representation take?

Successor array: m elements (arcs), each containing a node
(log n bits); with 32 bits, we can store up to 4 billion nodes
(half of it, if we don’t have unsigned types)

Offset array: n elements (nodes), each containing an index in
the successor array (logm bits); with 32 bits, we can store up
t 4 billion arcs.

All in all, 32(n + m) bits. If we assume m = 8n (a very modest
assumption on the outdegree), we need 288n bits, i.e., 288
bits/node, 36 bits/arc.
We show how to reduce this of an order of magnitude.

Storing the graph

Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

be instantaneously decodable

minimize the expected bitlength.

Storing the graph

Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

be instantaneously decodable

minimize the expected bitlength.

Storing the graph

Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

be instantaneously decodable

minimize the expected bitlength.

What about the offset array?

bit displacement vs. byte displacement (with alignment)

we have to keep an explicit representation of the node degrees
(e.g., in the successor array, before every successsor list).

Storing the graph

Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

be instantaneously decodable

minimize the expected bitlength.

What about the offset array?

bit displacement vs. byte displacement (with alignment)

we have to keep an explicit representation of the node degrees
(e.g., in the successor array, before every successsor list).

Storing the graph

Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

be instantaneously decodable

minimize the expected bitlength.

What about the offset array?

bit displacement vs. byte displacement (with alignment)

we have to keep an explicit representation of the node degrees
(e.g., in the successor array, before every successsor list).

Storing the graph

Variable-length representation

0 1 2 3 4 5 6 7

1 10 0 0 0 0 0 0 0 0 0 0 0

3 73 12 14 5 2

0 20offset

0 1 2 3

........

n−1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 37 38 39 40

succ

33 33

........

2

Node degrees (blue background), followed by successors. Each
number is represented using an instantaneous code (possibly,
different for degree and successors).

Storing the graph

Aside: Variable-length representations

Aside: Variable-length representations

Instantaneous code

An instantaneous (binary) code for the set S is a function
c : S → {0, 1}∗ such that, for all x , y ∈ S , if c(x) is a prefix
of c(y), then x = y .

Let lx be the length (in bits) of c(x).

Kraft-McMillan: there exists an instantaneous code with
lengths lx (x ∈ S) if and only if∑

x∈S
2−lx ≤ 1.

An instantaneous code for which the equality holds is called
“complete”.

Aside: Variable-length representations

Instantaneous code

An instantaneous (binary) code for the set S is a function
c : S → {0, 1}∗ such that, for all x , y ∈ S , if c(x) is a prefix
of c(y), then x = y .

Let lx be the length (in bits) of c(x).

Kraft-McMillan: there exists an instantaneous code with
lengths lx (x ∈ S) if and only if∑

x∈S
2−lx ≤ 1.

An instantaneous code for which the equality holds is called
“complete”.

Aside: Variable-length representations

Instantaneous code

An instantaneous (binary) code for the set S is a function
c : S → {0, 1}∗ such that, for all x , y ∈ S , if c(x) is a prefix
of c(y), then x = y .

Let lx be the length (in bits) of c(x).

Kraft-McMillan: there exists an instantaneous code with
lengths lx (x ∈ S) if and only if∑

x∈S
2−lx ≤ 1.

An instantaneous code for which the equality holds is called
“complete”.

Aside: Variable-length representations

Instantaneous code

An instantaneous (binary) code for the set S is a function
c : S → {0, 1}∗ such that, for all x , y ∈ S , if c(x) is a prefix
of c(y), then x = y .

Let lx be the length (in bits) of c(x).

Kraft-McMillan: there exists an instantaneous code with
lengths lx (x ∈ S) if and only if∑

x∈S
2−lx ≤ 1.

An instantaneous code for which the equality holds is called
“complete”.

Aside: Variable-length representations

Expected length

Given a set S and an instantaneous code c : S → {0, }∗, the
expected length of c with respect to some probability distribution
p : S → [0, 1] is

Ep[c] =
∑
s∈S

p(s) · |c(s)|.

Given a probability distribution p, the optimal code is the
instantaneous code c∗p : S → {0, 1} minimizing Ep[c∗p].

If S is finite:

H[p] = Ep[c∗p] (Shannon’s coding theorem)
c∗p is the Huffman coding.

Aside: Variable-length representations

Expected length

Given a set S and an instantaneous code c : S → {0, }∗, the
expected length of c with respect to some probability distribution
p : S → [0, 1] is

Ep[c] =
∑
s∈S

p(s) · |c(s)|.

Given a probability distribution p, the optimal code is the
instantaneous code c∗p : S → {0, 1} minimizing Ep[c∗p].

If S is finite:

H[p] = Ep[c∗p] (Shannon’s coding theorem)
c∗p is the Huffman coding.

Aside: Variable-length representations

Expected length

Given a set S and an instantaneous code c : S → {0, }∗, the
expected length of c with respect to some probability distribution
p : S → [0, 1] is

Ep[c] =
∑
s∈S

p(s) · |c(s)|.

Given a probability distribution p, the optimal code is the
instantaneous code c∗p : S → {0, 1} minimizing Ep[c∗p].

If S is finite:

H[p] = Ep[c∗p] (Shannon’s coding theorem)
c∗p is the Huffman coding.

Aside: Variable-length representations

Expected length

Given a set S and an instantaneous code c : S → {0, }∗, the
expected length of c with respect to some probability distribution
p : S → [0, 1] is

Ep[c] =
∑
s∈S

p(s) · |c(s)|.

Given a probability distribution p, the optimal code is the
instantaneous code c∗p : S → {0, 1} minimizing Ep[c∗p].

If S is finite:

H[p] = Ep[c∗p] (Shannon’s coding theorem)

c∗p is the Huffman coding.

Aside: Variable-length representations

Expected length

Given a set S and an instantaneous code c : S → {0, }∗, the
expected length of c with respect to some probability distribution
p : S → [0, 1] is

Ep[c] =
∑
s∈S

p(s) · |c(s)|.

Given a probability distribution p, the optimal code is the
instantaneous code c∗p : S → {0, 1} minimizing Ep[c∗p].

If S is finite:

H[p] = Ep[c∗p] (Shannon’s coding theorem)
c∗p is the Huffman coding.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Intended distribution

Given an instantaneous code c : S → {0, 1}∗, define a
p : S → [0, 1] as

p(x) = 2−|c(x)|.

p is called the intended distribution for the code c .

to be more precise: P is a probability distribution if c is
complete (otherwise it does not sum up to 1, and we need to
introduce some normalization factor to turn it into a
distribution).

It is easy to see that (if S is finite) c is the optimal code for p; in
fact:

H(p) =
∑
s∈S
−p(s) log p(s) =

∑
s∈S

2−|c(s)||c(s)| =
∑
s∈S

p(s)|c(s)| = Ep[c].

So, in practice, the choice of the code to use will be based on the
expected distribution of the data.

Aside: Variable-length representations

Fixed-length coding

If S = {1, 2, . . . ,N}, to represent an element of S it is
sufficient to use dlogNe bits.

The fixed-length representation for S uses exactly that
number of bits for every element (and represents x using the
standard binary coding of x − 1 on dlogNe bits).

Intended distribution:

p(x) = 2−dlogNe uniform distribution.

Aside: Variable-length representations

Fixed-length coding

If S = {1, 2, . . . ,N}, to represent an element of S it is
sufficient to use dlogNe bits.

The fixed-length representation for S uses exactly that
number of bits for every element (and represents x using the
standard binary coding of x − 1 on dlogNe bits).

Intended distribution:

p(x) = 2−dlogNe uniform distribution.

Aside: Variable-length representations

Fixed-length coding

If S = {1, 2, . . . ,N}, to represent an element of S it is
sufficient to use dlogNe bits.

The fixed-length representation for S uses exactly that
number of bits for every element (and represents x using the
standard binary coding of x − 1 on dlogNe bits).

Intended distribution:

p(x) = 2−dlogNe uniform distribution.

Aside: Variable-length representations

Unary coding

If S = N, one can represent x ∈ S writing x zeroes followed
by a one.

So lx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution of ratio 1/2.

Aside: Variable-length representations

Unary coding

If S = N, one can represent x ∈ S writing x zeroes followed
by a one.

So lx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution of ratio 1/2.

Aside: Variable-length representations

Unary coding

If S = N, one can represent x ∈ S writing x zeroes followed
by a one.

So lx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution of ratio 1/2.

0 1
1 01
2 001
3 0001
4 00001

Aside: Variable-length representations

A more general viewpoint

Unary coding can be seen as a special case of a more general kind
of coding for N. Suppose you group N into slots: every slot is
made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).

Aside: Variable-length representations

A more general viewpoint

Unary coding can be seen as a special case of a more general kind
of coding for N. Suppose you group N into slots: every slot is
made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).
Then, to represent x ∈ N one can

encode in unary the index i of the slot containing x ;

encode in binary the offset of x within its slot (using dlog sie
bits).

Aside: Variable-length representations

A more general viewpoint

Unary coding can be seen as a special case of a more general kind
of coding for N. Suppose you group N into slots: every slot is
made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).
Then, to represent x ∈ N one can

encode in unary the index i of the slot containing x ;

encode in binary the offset of x within its slot (using dlog sie
bits).

Aside: Variable-length representations

A more general viewpoint

Unary coding can be seen as a special case of a more general kind
of coding for N. Suppose you group N into slots: every slot is
made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).
Then, to represent x ∈ N one can

encode in unary the index i of the slot containing x ;

encode in binary the offset of x within its slot (using dlog sie
bits).

Aside: Variable-length representations

Golomb coding

Golomb coding with modulus b is obtained choosing

V = 〈b, b, b, . . . 〉.

To represent x ∈ N you need to specify the slot where x falls (that
is, bx/bc) in unary, and then represent the offset using dlog be bits
(or blog bc bits).

Aside: Variable-length representations

Golomb coding

Golomb coding with modulus b is obtained choosing

V = 〈b, b, b, . . . 〉.

To represent x ∈ N you need to specify the slot where x falls (that
is, bx/bc) in unary, and then represent the offset using dlog be bits
(or blog bc bits).
So

lx =
⌊x
b

⌋
+ dlog be.

The intended distribution is

p(x) = 2−lx ∝ (21/b)−x geometric distribution of ratio 1/
b
√

2.

Aside: Variable-length representations

More precisely. . .

A finer analysis shows that Golomb coding is optimal (=Huffman)
for a geometric distribution of ratio p, provided that b is chosen as

b =

⌈
log(2− p)

− log(1− p)

⌉
.

0 10
1 110
2 111
3 010
4 0110
5 0111
6 0010

Aside: Variable-length representations

More precisely. . .

A finer analysis shows that Golomb coding is optimal (=Huffman)
for a geometric distribution of ratio p, provided that b is chosen as

b =

⌈
log(2− p)

− log(1− p)

⌉
.

0 10
1 110
2 111
3 010
4 0110
5 0111
6 0010

Aside: Variable-length representations

Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).

Aside: Variable-length representations

Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits).

Aside: Variable-length representations

Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits). So

lx = 1 + 2blog xc =⇒ p(x) ∝ 1

2x2
(Zipf of exponent 2)

Aside: Variable-length representations

Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits). So

lx = 1 + 2blog xc =⇒ p(x) ∝ 1

2x2
(Zipf of exponent 2)

1 1
2 010
3 011
4 00100
5 00101

Aside: Variable-length representations

Universal codes

Given an instantaneous code c for the integers, we say that it
is universal iff Ep[c]/H[p] is bounded above by a constant for
every non-increasing distribution p.

In other words, a universal code is one that does not loose
more than a constant factor with respect to the optimal code
independently from the distribution (provided that it is
non-increasing).

Elias’ γ is the first example we meet of a universal code!

Aside: Variable-length representations

Universal codes

Given an instantaneous code c for the integers, we say that it
is universal iff Ep[c]/H[p] is bounded above by a constant for
every non-increasing distribution p.

In other words, a universal code is one that does not loose
more than a constant factor with respect to the optimal code
independently from the distribution (provided that it is
non-increasing).

Elias’ γ is the first example we meet of a universal code!

Aside: Variable-length representations

Universal codes

Given an instantaneous code c for the integers, we say that it
is universal iff Ep[c]/H[p] is bounded above by a constant for
every non-increasing distribution p.

In other words, a universal code is one that does not loose
more than a constant factor with respect to the optimal code
independently from the distribution (provided that it is
non-increasing).

Elias’ γ is the first example we meet of a universal code!

Aside: Variable-length representations

Universal codes

Given an instantaneous code c for the integers, we say that it
is universal iff Ep[c]/H[p] is bounded above by a constant for
every non-increasing distribution p.

In other words, a universal code is one that does not loose
more than a constant factor with respect to the optimal code
independently from the distribution (provided that it is
non-increasing).

Elias’ γ is the first example we meet of a universal code!

Aside: Variable-length representations

Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ. [Also δ is universal!]

Aside: Variable-length representations

Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ. [Also δ is universal!]
So

lx = 1 + 2blog log xc+ blog xc =⇒ p(x) ∝ 1

2x(log x)2

Aside: Variable-length representations

Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ. [Also δ is universal!]
So

lx = 1 + 2blog log xc+ blog xc =⇒ p(x) ∝ 1

2x(log x)2

1 1
2 0100
3 0101
4 01100
5 01101
6 00100000
7 00100001

Aside: Variable-length representations

An alternative way. . .

. . . to think of γ coding is that x is represented using its usual
binary representation (except for the initial “1”, which is omitted),
with every bit “coming with” a continuation bit, that tells whether
the representation continues or whether it stops there.
For example (up to bit permutation) γ coding of 724 (in binary:
1011010100) is

0 1 1 0 1 0 1 0 01 1 1 1 1 1 1 1 0

Aside: Variable-length representations

k-bit-variable coding

What happens if we group digits k by k?

0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 00

000110110

0

111100

000110101110

0001011011

Aside: Variable-length representations

k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.

Aside: Variable-length representations

k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.
So

lx = (k+1)(dlog(x)/ke) =⇒ p(x) ∝ x−(k+1)/k(Zipf (k + 1)/k)

Aside: Variable-length representations

k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.
So

lx = (k+1)(dlog(x)/ke) =⇒ p(x) ∝ x−(k+1)/k(Zipf (k + 1)/k)

A more efficient variant: the ζk codes (for Zipf 1→ 2).

γ = ζ1 ζ2 ζ3 ζ4
1 1 10 100 1000
2 010 110 1010 10010
3 011 111 1011 10011
4 00100 01000 1100 10100
5 00101 01001 1101 10101
6 00110 01010 1110 10110
7 00111 01011 1111 10111
8 0001000 011000 0100000 11000

Aside: Variable-length representations

Comparing codings

Unaria = Golomb 1
Golomb 3
gamma=1-var
3-var
delta

Legend

.1e–2

.1e–1

.1

1.

2. 4. 7. .1e2
x

Aside: Variable-length representations

Graph compression with instantaneous codes:
BVGraph

Graph compression with instantaneous codes: BVGraph

Coding techniques. . .

. . . alone do not improve on compression: we have first to
guarantee that the data we represent have a distribution close to
the intended one (depending on the coding we are going to use).
In particular, they have to enjoy a monotonic distribution (smaller
values are more probable than larger ones).

BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

Degrees are often distributed like a Zipf of exponent ≈ 2.7:
they can be safely encoded using γ.

What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?

Graph compression with instantaneous codes: BVGraph

Coding techniques. . .

. . . alone do not improve on compression: we have first to
guarantee that the data we represent have a distribution close to
the intended one (depending on the coding we are going to use).
In particular, they have to enjoy a monotonic distribution (smaller
values are more probable than larger ones).

BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

Degrees are often distributed like a Zipf of exponent ≈ 2.7:
they can be safely encoded using γ.

What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?

Graph compression with instantaneous codes: BVGraph

Coding techniques. . .

. . . alone do not improve on compression: we have first to
guarantee that the data we represent have a distribution close to
the intended one (depending on the coding we are going to use).
In particular, they have to enjoy a monotonic distribution (smaller
values are more probable than larger ones).

BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

Degrees are often distributed like a Zipf of exponent ≈ 2.7:
they can be safely encoded using γ.

What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?

Graph compression with instantaneous codes: BVGraph

Coding techniques. . .

. . . alone do not improve on compression: we have first to
guarantee that the data we represent have a distribution close to
the intended one (depending on the coding we are going to use).
In particular, they have to enjoy a monotonic distribution (smaller
values are more probable than larger ones).

BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

Degrees are often distributed like a Zipf of exponent ≈ 2.7:
they can be safely encoded using γ.

What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?

Graph compression with instantaneous codes: BVGraph

Locality

In general, we cannot say much about their distribution, unless we
make some assumption on the way in which nodes are numbered.

The following considerations hold true for web graphs!

Many hypertextual links contained in a web page are
navigational (“home”, “next”, “up”. . .). If we compare the
URL they refer to with that of the page containing them, they
share a long common prefix. This property is known as
locality and it was first observed by the authors of the
Connectivity Server.

To exploit this property, assume that URLs are ordered
lexicographically (that is, node 0 is the first URL in
lexicographic order, etc.). Then, if x → y is an arc, most of
the times |x − y | will be “small”.

Graph compression with instantaneous codes: BVGraph

Locality

In general, we cannot say much about their distribution, unless we
make some assumption on the way in which nodes are numbered.
The following considerations hold true for web graphs!

Many hypertextual links contained in a web page are
navigational (“home”, “next”, “up”. . .). If we compare the
URL they refer to with that of the page containing them, they
share a long common prefix. This property is known as
locality and it was first observed by the authors of the
Connectivity Server.

To exploit this property, assume that URLs are ordered
lexicographically (that is, node 0 is the first URL in
lexicographic order, etc.). Then, if x → y is an arc, most of
the times |x − y | will be “small”.

Graph compression with instantaneous codes: BVGraph

Locality

In general, we cannot say much about their distribution, unless we
make some assumption on the way in which nodes are numbered.
The following considerations hold true for web graphs!

Many hypertextual links contained in a web page are
navigational (“home”, “next”, “up”. . .). If we compare the
URL they refer to with that of the page containing them, they
share a long common prefix. This property is known as
locality and it was first observed by the authors of the
Connectivity Server.

To exploit this property, assume that URLs are ordered
lexicographically (that is, node 0 is the first URL in
lexicographic order, etc.). Then, if x → y is an arc, most of
the times |x − y | will be “small”.

Graph compression with instantaneous codes: BVGraph

Locality

In general, we cannot say much about their distribution, unless we
make some assumption on the way in which nodes are numbered.
The following considerations hold true for web graphs!

Many hypertextual links contained in a web page are
navigational (“home”, “next”, “up”. . .). If we compare the
URL they refer to with that of the page containing them, they
share a long common prefix. This property is known as
locality and it was first observed by the authors of the
Connectivity Server.

To exploit this property, assume that URLs are ordered
lexicographically (that is, node 0 is the first URL in
lexicographic order, etc.). Then, if x → y is an arc, most of
the times |x − y | will be “small”.

Graph compression with instantaneous codes: BVGraph

Exploiting locality

If x has successors y1 < y2 < · · · < yk , we represent its successor
list though the gaps (differentiation):

y1 − x , y2 − y1 − 1, . . . , yk − yk−1 − 1

(only the first value can be negative: wa make it into a natural
number. . .). How are such differences distributed?

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

Zipf with exponent 1.2 =⇒ we use ζ3.

Graph compression with instantaneous codes: BVGraph

Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.

Graph compression with instantaneous codes: BVGraph

Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
We may encode the successor list of x as follows:

we write the differences with respect to the successor list of
some previous node x − r (called the reference node)

we explicitly encode (as before) only the successors of x that
were not successors of x − r .

Graph compression with instantaneous codes: BVGraph

Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
We may encode the successor list of x as follows:

we write the differences with respect to the successor list of
some previous node x − r (called the reference node)

we explicitly encode (as before) only the successors of x that
were not successors of x − r .

Graph compression with instantaneous codes: BVGraph

Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
We may encode the successor list of x as follows:

we write the differences with respect to the successor list of
some previous node x − r (called the reference node)

we explicitly encode (as before) only the successors of x that
were not successors of x − r .

Graph compression with instantaneous codes: BVGraph

Similarity (cont’d)

More explicitly, the successor list of x is encoded as (referencing):

an intger r (reference): if r > 0, the list is described by
difference with respect to the successor list of x − r ; in this
case, we write a bitvector (of length equal to d+(x − r))
discriminating the elements in N+(x − r) ∩ N+(x) from the
ones in N+(x − r) \ N+(x)

an explicit list of extra nodes, containing the elements of
N+(x) \ N+(x − r) (or the whole N+(x), if r = 0), encoded
as explained before.

Graph compression with instantaneous codes: BVGraph

Similarity (cont’d)

More explicitly, the successor list of x is encoded as (referencing):

an intger r (reference): if r > 0, the list is described by
difference with respect to the successor list of x − r ; in this
case, we write a bitvector (of length equal to d+(x − r))
discriminating the elements in N+(x − r) ∩ N+(x) from the
ones in N+(x − r) \ N+(x)

an explicit list of extra nodes, containing the elements of
N+(x) \ N+(x − r) (or the whole N+(x), if r = 0), encoded
as explained before.

Graph compression with instantaneous codes: BVGraph

Referencing example

Node Outdegree Successors
.
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
.

Node Outd. Ref. Copy list Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
.

Graph compression with instantaneous codes: BVGraph

Blocks (differential compression)

Instead of using a bitvector, we use run-length encoding, telling
the length of successive runs (blocks) of “0” and “1”:
Node Outd. Ref. Copy list Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
.

Graph compression with instantaneous codes: BVGraph

Blocks (differential compression)

Instead of using a bitvector, we use run-length encoding, telling
the length of successive runs (blocks) of “0” and “1”:
Node Outd. Ref. Copy list Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
.

Node Outd. Ref. # blocks Copy blocks Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
.

Graph compression with instantaneous codes: BVGraph

Consecutivity

Among the extra nodes, many happen to sport the consecutivity
property: they appear in clusters of consecutive integers. This
phenomenon, observed empirically, have some possible
explanations:

most pages contain groups of navigational links that
correspond to a certain hierarchical level of the website, and
are often consecutive to one another;

in the transpose graph, moreover, consecutivity is the dual of
similarity with reference 1: when there is a cluster of
consecutive pages with many similar links, in the transpose
there are intervals of consecutive outgoing links.

Graph compression with instantaneous codes: BVGraph

Consecutivity

Among the extra nodes, many happen to sport the consecutivity
property: they appear in clusters of consecutive integers. This
phenomenon, observed empirically, have some possible
explanations:

most pages contain groups of navigational links that
correspond to a certain hierarchical level of the website, and
are often consecutive to one another;

in the transpose graph, moreover, consecutivity is the dual of
similarity with reference 1: when there is a cluster of
consecutive pages with many similar links, in the transpose
there are intervals of consecutive outgoing links.

Graph compression with instantaneous codes: BVGraph

Consecutivity

Among the extra nodes, many happen to sport the consecutivity
property: they appear in clusters of consecutive integers. This
phenomenon, observed empirically, have some possible
explanations:

most pages contain groups of navigational links that
correspond to a certain hierarchical level of the website, and
are often consecutive to one another;

in the transpose graph, moreover, consecutivity is the dual of
similarity with reference 1: when there is a cluster of
consecutive pages with many similar links, in the transpose
there are intervals of consecutive outgoing links.

Graph compression with instantaneous codes: BVGraph

Consecutivity (cont’d)

To exploit consecutivity, we use a special representation for the
extra node list called intervalization, that is:

sufficiently long (say ≥ T) intervals of consecutive integers are
represented by their left extreme and their length minus T ;

other extra nodes, if any, are called residual nodes and are
represented alone.

Graph compression with instantaneous codes: BVGraph

Intervalization example

Node Outd. Ref. # blocks Copy blocks Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
.

Graph compression with instantaneous codes: BVGraph

Intervalization example

Node Outd. Ref. # blocks Copy blocks Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
.

Node Outd. Ref. # bl. Copy bl.s # int. Lft extr. Lth Residuals
. .
15 11 0 2 15,. . . 4,. . . 13, 23 . . .
16 10 1 7 0, 0, . . . 1 316 1 22, 3041
17 0
18 5 3 1 4 0 50
. .

Graph compression with instantaneous codes: BVGraph

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go?

Graph compression with instantaneous codes: BVGraph

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

a large W guarantees better compression, but increases
compression time and space

after W = 7 there is no significant improvement in
compression.

Graph compression with instantaneous codes: BVGraph

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

a large W guarantees better compression, but increases
compression time and space

after W = 7 there is no significant improvement in
compression.

Graph compression with instantaneous codes: BVGraph

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

a large W guarantees better compression, but increases
compression time and space

after W = 7 there is no significant improvement in
compression.

Graph compression with instantaneous codes: BVGraph

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

a large W guarantees better compression, but increases
compression time and space

after W = 7 there is no significant improvement in
compression.

The choice of W does not impact on decompression time.

Graph compression with instantaneous codes: BVGraph

Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.

Graph compression with instantaneous codes: BVGraph

Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.
During compression, it is possible to limit their length keeping into
account of how long is the reference chain for every node in the
window and avoiding to use nodes whose reference chain is already
of a given maximum length R.

Graph compression with instantaneous codes: BVGraph

Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.
During compression, it is possible to limit their length keeping into
account of how long is the reference chain for every node in the
window and avoiding to use nodes whose reference chain is already
of a given maximum length R.
The choice of R influences the compression ratio (with R =∞
giving the best possible compression) but also on decompression
speed (R =∞ may produce access time that can be two orders of
magnitude larger than R = 1 — it may even produce stack
overflows).

Graph compression with instantaneous codes: BVGraph

BVGraph for general graphs: LLPA

BVGraph for general graphs: LLPA

From web graphs to complex networks

The basic property we have been exploiting so far is that nodes are
numbered according to the lexicographic ordering of URLs. Is it
possible to adapt / extend this idea to non-web graphs, e.g., to
social networks?

What we want is an ordering of the nodes that is compression
friendly

In particular, we want that most arcs are between nodes that
are very close (as numbers) to each other.

BVGraph for general graphs: LLPA

From web graphs to complex networks

The basic property we have been exploiting so far is that nodes are
numbered according to the lexicographic ordering of URLs. Is it
possible to adapt / extend this idea to non-web graphs, e.g., to
social networks?

What we want is an ordering of the nodes that is compression
friendly

In particular, we want that most arcs are between nodes that
are very close (as numbers) to each other.

BVGraph for general graphs: LLPA

From web graphs to complex networks

The basic property we have been exploiting so far is that nodes are
numbered according to the lexicographic ordering of URLs. Is it
possible to adapt / extend this idea to non-web graphs, e.g., to
social networks?

What we want is an ordering of the nodes that is compression
friendly

In particular, we want that most arcs are between nodes that
are very close (as numbers) to each other.

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.

Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.
Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.

Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.
Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.
Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.
Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.
Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1 very few clustering techniques scale up to very large graphs

2 we do not posses any prior information on the number of
clusters

3 cluster sizes are going to be very unbalanced

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A

Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)

Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Orderings and communities (cont’d)

You can obtain an ordering from a clustering just sorting by
cluster label

Different clustering algorithms yield different and
incomparable orderings

Main idea:

Run a clustering algorithm A
Renumber nodes sorting by A’s labels, breaking ties using the
node numbers (i.e., sort stably by A’s labels)
Iterate with another clustering algorithm

BVGraph for general graphs: LLPA

Label Propagation Algorithm (LPA)

LPA are a class of clustering algorithm that work as follows:

Every node adopts the label that is most common among its
neighbors. . .

. . . with an adjustment depending on the overall popularity of
the label

BVGraph for general graphs: LLPA

Label Propagation Algorithm (LPA)

LPA are a class of clustering algorithm that work as follows:

Every node adopts the label that is most common among its
neighbors. . .

. . . with an adjustment depending on the overall popularity of
the label

BVGraph for general graphs: LLPA

Label Propagation Algorithm (LPA)

LPA are a class of clustering algorithm that work as follows:

Every node adopts the label that is most common among its
neighbors. . .

. . . with an adjustment depending on the overall popularity of
the label

BVGraph for general graphs: LLPA

Label Propagation Algoritm (LPA)

Require: G a graph, γ a density parameter
1: π ← a random permutation of G ’s nodes
2: for all x : λ(x)← x , v(x)← 1
3: while (some stopping criterion) do
4: for i = 0, 1, . . . , n − 1 do
5: for every label `, k` ← |λ−1(`) ∩ NG (π(i))|
6: ˆ̀← argmax`[k` − γ(v(`)− k`)]
7: decrement v(λ(π(i)))
8: λ(π(i))← ˆ̀

9: increment v(λ(π(i)))
10: end for
11: end while

Here v(`) is the number of nodes currently labelled by `, so
v(`)− k` is the popularity of label ` outside of the current
neighborhood.

BVGraph for general graphs: LLPA

Layered Label Propagation Algoritm (LLPA)

Repeatedly run LPA with different values of γ

Renumber nodes sorting by stably by the new labels

Name LLP BFS Shingle Natural Random
Amazon 9.16 (-30%) 12.96 14.43 (+11%) 16.92 (+30%) 23.62 (+82%)
DBLP 6.88 (-23%) 8.91 11.42 (+28%) 11.36 (+27%) 22.07 (+147%)
Enron 6.51 (-24%) 8.54 9.87 (+15%) 13.43 (+57%) 14.02 (+64%)
Hollywood 5.14 (-35%) 7.81 6.72 (-14%) 15.20 (+94%) 16.23 (+107%)
LiveJournal 10.90 (-28%) 15.1 15.77 (+4%) 14.35 (-5%) 23.50 (+55%)
Flickr 8.89 (-22%) 11.26 10.22 (-10%) 13.87 (+23%) 14.49 (+28%)
indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 10.81 (+41%) 15.58 (+104%)
eu 3.90 (-21%) 4.93 6.86 (+39%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 8.37 (+43%) 34.76 (+494%)

BVGraph for general graphs: LLPA

Layered Label Propagation Algoritm (LLPA)

Repeatedly run LPA with different values of γ

Renumber nodes sorting by stably by the new labels

Name LLP BFS Shingle Natural Random
Amazon 9.16 (-30%) 12.96 14.43 (+11%) 16.92 (+30%) 23.62 (+82%)
DBLP 6.88 (-23%) 8.91 11.42 (+28%) 11.36 (+27%) 22.07 (+147%)
Enron 6.51 (-24%) 8.54 9.87 (+15%) 13.43 (+57%) 14.02 (+64%)
Hollywood 5.14 (-35%) 7.81 6.72 (-14%) 15.20 (+94%) 16.23 (+107%)
LiveJournal 10.90 (-28%) 15.1 15.77 (+4%) 14.35 (-5%) 23.50 (+55%)
Flickr 8.89 (-22%) 11.26 10.22 (-10%) 13.87 (+23%) 14.49 (+28%)
indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 10.81 (+41%) 15.58 (+104%)
eu 3.90 (-21%) 4.93 6.86 (+39%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 8.37 (+43%) 34.76 (+494%)

BVGraph for general graphs: LLPA

Layered Label Propagation Algoritm (LLPA)

Repeatedly run LPA with different values of γ

Renumber nodes sorting by stably by the new labels

Name LLP BFS Shingle Natural Random
Amazon 9.16 (-30%) 12.96 14.43 (+11%) 16.92 (+30%) 23.62 (+82%)
DBLP 6.88 (-23%) 8.91 11.42 (+28%) 11.36 (+27%) 22.07 (+147%)
Enron 6.51 (-24%) 8.54 9.87 (+15%) 13.43 (+57%) 14.02 (+64%)
Hollywood 5.14 (-35%) 7.81 6.72 (-14%) 15.20 (+94%) 16.23 (+107%)
LiveJournal 10.90 (-28%) 15.1 15.77 (+4%) 14.35 (-5%) 23.50 (+55%)
Flickr 8.89 (-22%) 11.26 10.22 (-10%) 13.87 (+23%) 14.49 (+28%)
indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 10.81 (+41%) 15.58 (+104%)
eu 3.90 (-21%) 4.93 6.86 (+39%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 8.37 (+43%) 34.76 (+494%)

BVGraph for general graphs: LLPA

Graph compression with Elias-Fano: EFGraph

Graph compression with Elias-Fano: EFGraph

Elias-Fano representation

Elias proposed in 1975 a general representation for monotone
sequences, later discussed by Fano

In 2012 Vigna proposed to use it for inverted indices, and in
particular for storing successor lists in graph compression. . .

A very general technique!

Graph compression with Elias-Fano: EFGraph

Elias-Fano representation

Elias proposed in 1975 a general representation for monotone
sequences, later discussed by Fano

In 2012 Vigna proposed to use it for inverted indices, and in
particular for storing successor lists in graph compression. . .

A very general technique!

Graph compression with Elias-Fano: EFGraph

Elias-Fano representation

Elias proposed in 1975 a general representation for monotone
sequences, later discussed by Fano

In 2012 Vigna proposed to use it for inverted indices, and in
particular for storing successor lists in graph compression. . .

A very general technique!

Graph compression with Elias-Fano: EFGraph

Elias-Fano representation

Elias proposed in 1975 a general representation for monotone
sequences, later discussed by Fano

In 2012 Vigna proposed to use it for inverted indices, and in
particular for storing successor lists in graph compression. . .

A very general technique!

Graph compression with Elias-Fano: EFGraph

Idea

Given a non-decreasing sequence:

0 ≤ x1, . . . , xd < n

(e.g., the successors of a node of degree d in a graph of n nodes):

let ` = blog(n/d)c
write the ` lower bits of xi explicitly

write the upper bits as gaps, written in unary

Graph compression with Elias-Fano: EFGraph

Idea

Given a non-decreasing sequence:

0 ≤ x1, . . . , xd < n

(e.g., the successors of a node of degree d in a graph of n nodes):

let ` = blog(n/d)c

write the ` lower bits of xi explicitly

write the upper bits as gaps, written in unary

Graph compression with Elias-Fano: EFGraph

Idea

Given a non-decreasing sequence:

0 ≤ x1, . . . , xd < n

(e.g., the successors of a node of degree d in a graph of n nodes):

let ` = blog(n/d)c
write the ` lower bits of xi explicitly

write the upper bits as gaps, written in unary

Graph compression with Elias-Fano: EFGraph

Idea

Given a non-decreasing sequence:

0 ≤ x1, . . . , xd < n

(e.g., the successors of a node of degree d in a graph of n nodes):

let ` = blog(n/d)c
write the ` lower bits of xi explicitly

write the upper bits as gaps, written in unary

Graph compression with Elias-Fano: EFGraph

Idea

Given a non-decreasing sequence:

0 ≤ x1, . . . , xd < n

(e.g., the successors of a node of degree d in a graph of n nodes):

let ` = blog(n/d)c
write the ` lower bits of xi explicitly

write the upper bits as gaps, written in unary

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

Idea

So x1 = y1 · 2` + r1, . . . , xd = yd · 2` + rd , with ri written using `
bits each, and g1 = y1 − 0, g2 = y2 − y1, . . . , gd = yd − yd−1
written in unary:

writing the gi ’s requires d stopping bits. . .

. . . plus g1 + · · ·+ gd bits

g1 + · · ·+ gd = yd ≤ n/2` ≤ n/2log(n/d)−1 = 2d bits.

All in all we need 2 + dlog(n/d)e bits per element.

The representation is almost optimal (Elias proves that it is < .5
bit away from the information-theoretic lower bound).

Graph compression with Elias-Fano: EFGraph

