ar «F» N

Outline

Counting triangles

An interlude: probabilistic counters

Computing distances [and geometric centralities| in large
graphs using HyperBall

HyperBall on Facebook (a Milgram-like experiment)

Other applications of distances (in particular: robustness)

Graph algorithms

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

«0O0)>» «F»r «Z» « Q>

it
-

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

@ the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

@ the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

@ i.e., the fraction of triples (y1, x, y2) formed by two edges that
form themselves a triangle.

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

@ the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

@ i.e., the fraction of triples (y1, x, y2) formed by two edges that
form themselves a triangle.

@ Social networks exhibit a relatively large clustering coefficient,
compared to their diameter.

Counting triangles

As we said, the local clustering coefficient of a vertex x is
N N

ce(x) = iy, 2}y, z € ((Z)(,X)y) #z,y € N(2)}|s
2

it
-

«0O0)>» «F»r «Z» « Q>

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

_ Iy, zHy,ze N(x),y # 2,y € N(2)}]s

cc(x) (d(x))
2
A related notion is that of global clustering coefficient
ceg = Zoce),

the average clustering coefficient of its vertices.

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

_ Iy, zHy,ze N(x),y # 2,y € N(2)}]s

cc(x) (d(x))
2
A related notion is that of global clustering coefficient
ceg = Zoce),

the average clustering coefficient of its vertices.

@ How can one efficiently compute or approximate the
local /global clustering coefficient?

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

_ Iy, zHy,ze N(x),y # 2,y € N(2)}]s

cc(x) (d(x))
2
A related notion is that of global clustering coefficient
ceg = Zoce),

the average clustering coefficient of its vertices.

@ How can one efficiently compute or approximate the
local /global clustering coefficient?

@ Here we consider the local case

Counting triangles

Define, for every edge yz

T(yz) = |N(y) " N(z)|.

it
-

«0>» «Fr «E» < QR

Define, for every edge yz

T(yz) = [N(y) " N(z)].

This is the number of triangles that the edge yz closes.

it
-

«0O0)>» «F»r «Z» « Q>

Define, for every edge yz

T(yz) = [N(y) " N(z)].

This is the number of triangles that the edge yz closes.
From this, you can define

T(x)= > Tly)

yEN(x)

«0O0)>» «F»r «Z» « Q>

it
-

Triangles of an edge

Define, for every edge yz

T(yz) = [N(y) N N(z).

This is the number of triangles that the edge yz closes.

From this, you can define

hence

because T(x) counts every triangle twice. ..

Counting triangles

The problem thus can be reduced to computing, for every edge yz,

T(yz) = [N(y) N N(z)|.

it
-

«0O0)>» «F»r «Z» « Q>

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz,

T(yz) = [N(y) N N(2)|.
Recall the notion of Jaccard coefficient:

_ |ANnB|

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz,

T(yz) = [N(y) N N(2)|.
Recall the notion of Jaccard coefficient:

_ |ANnB|

Equivalently:

1 |AUB| _|Al+I|BI-|ANB| _|A[+|B|
J(AB) |AnB| AN B ~ |AnB]

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz,

T(yz) = [N(y) N N(2)|.
Recall the notion of Jaccard coefficient:

_ |ANnB|

Equivalently:
1 |AUB| _|Al+I|BI-|ANB| _|A[+|B|
J(AB) |AnB| AN B ~ |AnB]
Hence

A B
Ang _ A8

ZL
1+ jas

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz,

J(yz) = J(N(y), N(2)),
after which
d(y) + d(z)

1
1+ J(yz)

T(yz) =

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz,

J(yz) = J(N(y), N(2)),
after which
d(y) + d(z)

1
1+ J(yz)

T(yz) =

Recall that

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz,

J(yz) = J(N(y), N(2)),

after which d(y) + d(z)
T(yz) = A
J(yz)
Recall that
Theorem

Let AABC Q=1{0,1,...,M — 1}, and let IN be the set of all M!
permutations of Q). If w is drawn uniformly at random from 1

Plmin(r(A)) = min(r(B))] = J(A, B).

Counting triangles

So, the idea to compute J(N(y), N(z)) is:

it
-

«0>» «Fr «E» < QR

So, the idea to compute J(N(y), N(z)) is:

@ generate a random permutation (i.e., renumbering) 7 of the
nodes

it
-

«0O0)>» «F»r «Z» « Q>

So, the idea to compute J(N(y), N(z)) is:

@ generate a random permutation (i.e., renumbering) 7 of the
nodes

e compute min7(N(y)) and min7(N(z))

it
-

«40» «F»r « =) 4 Q>

The algorithm (outline)

So, the idea to compute J(N(y), N(z)) is:

@ generate a random permutation (i.e., renumbering) 7 of the
nodes
e compute min7(N(y)) and min7(N(z))

@ if the two values coincide, count +1

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y), N(z)) is:

@ generate a random permutation (i.e., renumbering) 7 of the
nodes
e compute min7(N(y)) and min7(N(z))

@ if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1's to estimate J(N(y), N(z)).

Counting triangles

Some further notes:

«0O>» «Fr < > < > Q>

Some further notes:

@ we have a counter per edge C[yz] (to count the number of
+1's): we keep them on external memory

«0O0)>» «F»r «Z» « Q>

it
-

The algorithm (outline)

Some further notes:

@ we have a counter per edge C[yz] (to count the number of
+1's): we keep them on external memory

e to know if min7(N(y)) = minm(N(z)) we must have
computed the minima before: we need two passes

Counting triangles

The algorithm (outline)

Some further notes:

@ we have a counter per edge C[yz] (to count the number of
+1's): we keep them on external memory

@ to know if minw(N(y)) = min7(N(z)) we must have
computed the minima before: we need two passes

e first pass: generate the permutation m and compute the
minima mintN(—)) (kept in central memory)

Counting triangles

The algorithm (outline)

Some further notes:

@ we have a counter per edge C[yz] (to count the number of
+1's): we keep them on external memory

e to know if min7(N(y)) = minm(N(z)) we must have
computed the minima before: we need two passes

e first pass: generate the permutation m and compute the
minima mintN(—)) (kept in central memory)
e second pass: increment the counters

Counting triangles

The algorithm (outline)

Some further notes:

@ we have a counter per edge C[yz] (to count the number of
+1's): we keep them on external memory

e to know if min7(N(y)) = minm(N(z)) we must have
computed the minima before: we need two passes

e first pass: generate the permutation m and compute the
minima mintN(—)) (kept in central memory)
e second pass: increment the counters

@ we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

fHac

]
il

for K times do

«gOr «Fr o« > <) .

for K times do

generate a hash function h: Vg — N

«0O>» «Fr < > < > Q>

for K times do

generate a hash function h: Vg — N
for each x € V; do

it
-

«0O0)>» «F»r «Z» « Q>

for K times do

generate a hash function h: Vg — N
for each x € V; do

MIx] = miny e h(y)
end for

it
-

«0O0)>» «F»r «Z» « Q>

for K times do
generate a hash function h: Vg — N
for each x € V; do
MIx] = minyc () h(y)
end for
for each x € V¢ do
for each y € N(x) do

«O0)>» «F» «=)» 4«

it
v

for K times do

generate a hash function h: Vg — N
for each x € V; do

MIx] = minyc () h(y)
end for
for each x € V¢ do

for each y € N(x) do

read C[xy] from disk

«O0)>» «F» «=)» 4«

it
v

The algorithm (1)

for K times do
generate a hash function h: Vg — N
for each x € V¢ do
M) < min,enge) h(y)
end for
for each x € V¢ do
for each y € N(x) do
read C[xy] from disk
if M[x] = M[y] then
Clxy] + Clxy] +1
end if

Counting triangles

The algorithm (1)

for K times do
generate a hash function h: Vg — N
for each x € V¢ do
M) < min,enge) h(y)
end for
for each x € V¢ do
for each y € N(x) do
read C[xy] from disk
if M[x] = M[y] then
Clxy] + Clxy] +1
end if
write C[xy] to disk
end for
end for
end for

Counting triangles

fHac

]
il

for each x € Ve do
T(x) <0

for each y € N(x) do

it
v

«O0>» «F>r» «Z2» < .

for each x € V¢ do
T(x)«0
for each y € N(x) do
read C[xy] from disk

i
v

«0>» «Fr «=)>» 4 .

for each x € V¢ do
T(x)«+0

for each y € N(x) do
read C[xy] from disk

T(xy) (d(x) +d(y))/(1 + K/ Clxy])

it
-

«0O0)>» «F»r «Z» « Q>

for each x € V¢ do
T(x)«0
for each y € N(x) do
read C[xy] from disk

end for

T(xy) (d(x) +d(y))/(1 + K/Clxy])
T(x) < T(xy)

it
-

«0O0)>» «F»r «Z» « Q>

for each x € V¢ do
T(x)«+0

for each y € N(x) do
read C[xy] from disk

T(xy) « (d(x) +d(y))/(1 + K/C[xy])
T(x) < T(xy)
end for

end for

ce(x) < T(x)/(d(x)? = d(x))

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

it
-

«0O0)>» «F»r «Z» « Q>

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

@ an approximate counter is like a counter (with primitives
“increment()” and “value()") that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

@ an approximate counter is like a counter (with primitives
“increment()” and “value()") that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

@ a probabilistic counter is like a set (with primitives “add(x)"
and “size()"):

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

@ an approximate counter is like a counter (with primitives
“increment()” and “value()") that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

@ a probabilistic counter is like a set (with primitives “add(x)"
and “size()"): it is called a counter because it can be used to

count the number of distinct elements in a stream [pioneer:
Flajolet 1985].

An interlude: probabilistic counters

primitives:

ADT to represent a subset A of a universe . The ADT has two

it
-

«0O0)>» «F»r «Z» « Q>

ADT to represent a subset A of a universe . The ADT has two
primitives:

@ "add(x)" to add an element x € Q to A

it
-

«0O0)>» «F»r «Z» « Q>

ADT to represent a subset A of a universe . The ADT has two
primitives:

@ "add(x)" to add an element x € Q to A

o “size()" to get the (approximate) |A|

it
-

«0O0» «F»r « =) « P NEd

Probabilistic counters

ADT to represent a subset A of a universe 2. The ADT has two
primitives:

@ "add(x)” to add an element x € Q to A

e “size()" to get the (approximate) |A|

With || bits you can realize an exact (non-approximate) version
of this.

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe 2. The ADT has two
primitives:

@ "add(x)” to add an element x € Q to A

e “size()" to get the (approximate) |A|
With || bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |€2| or loglog |2 bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than €% with
probability not larger than...")

An interlude: probabilistic counters

Many solutions on the market! They differ by:

it
-

«0O0)>» «F»r «Z» « Q>

Many solutions on the market! They differ by:
@ size vs. accuracy tradeoff

«0O0)>» «F»r «Z» « Q>

it
-

Many solutions on the market! They differ by:
@ size vs. accuracy tradeoff

@ ‘“quantity” of randomness needed

«0O0)>» «F»r «Z» « Q>

it
-

Probabilistic counters

Many solutions on the market! They differ by:

@ size vs. accuracy tradeoff
@ “quantity” of randomness needed

@ simplifying assumptions they take for granted.

An interlude: probabilistic counters

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.

it
-

«0O0)>» «F»r «Z» « Q>

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.

@ We choose a hash function h: Q — {0,...,2¢ — 1}

it
-

«0O0)>» «F»r «Z» « Q>

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.

@ We choose a hash function h: Q — {0,...,2¢ — 1}

@ Assumption: elements of h(x) are uniformly distributed

it
-

«0O0)>» «F»r «Z» « Q>

FM counters

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.
@ We choose a hash function h: Q — {0,...,2¢ — 1}

@ Assumption: elements of h(x) are uniformly distributed
@ Use a counter with ¢ bits (indices: 0,1,...,¢ — 1)

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.
@ We choose a hash function h: Q — {0,...,2¢ — 1}
@ Assumption: elements of h(x) are uniformly distributed
@ Use a counter with ¢ bits (indices: 0,1,...,¢ — 1)

@ “add(x)": set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Q in ¢ = log || bits.
@ We choose a hash function h: Q — {0,...,2¢ — 1}

@ Assumption: elements of h(x) are uniformly distributed
@ Use a counter with ¢ bits (indices: 0,1,...,¢ — 1)

@ “add(x)": set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

e 'size()": see below.

An interlude: probabilistic counters

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100.. .

it
-

«0O0)>» «F»r «Z» « Q>

FM counters (cont'd)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. ..

e if n/2 is large enough, probably the k-th bit was set.

An interlude: probabilistic counters

FM counters (cont'd)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. ..

e if n/2 is large enough, probably the k-th bit was set.
@ in other words, if k < log, n it is very likely that k was set. ..

An interlude: probabilistic counters

FM counters (cont'd)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. ..

e if n/2 is large enough, probably the k-th bit was set.

@ in other words, if k < log, n it is very likely that k was set. ..

@ ...and, if k > log, n it is very likely that k was not set.

An interlude: probabilistic counters

FM counters (cont'd)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. ..

e if n/2 is large enough, probably the k-th bit was set.

@ in other words, if k < log, n it is very likely that k was set. ..

@ ...and, if k > log, n it is very likely that k was not set.

= "“size()": Let k be the number of trailing 1's; return
2k/0.77351

An interlude: probabilistic counters

FM counters (cont'd)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. ..

e if n/2 is large enough, probably the k-th bit was set.

@ in other words, if k < log, n it is very likely that k was set. ..

@ ...and, if k > log, n it is very likely that k was not set.

= "“size()": Let k be the number of trailing 1's; return
2k/0.77351

... Unbiased estimator.

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average!

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average! Variance reduces from
o?too?/T

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average! Variance reduces from
o?too?/T

Accuracy vs. time! [Or space, if you run the T solutions in parallel]

An interlude: probabilistic counters

fHac

]
il

e Fix a splitting (hash) function s : Q — {0,..., k — 1} that

divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qk_1

it
-

«0O0)>» «F»r «Z» « Q>

Tricks (2): Splitting trick

e Fix a splitting (hash) function s : Q — {0,..., k — 1} that
divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qx_1

@ o can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

An interlude: probabilistic counters

Tricks (2): Splitting trick

e Fix a splitting (hash) function s : Q — {0,..., k — 1} that
divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qx_1

@ o can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

@ Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Q@ — {0,..., k — 1} that
divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qx_1

@ o can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing
Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Q2|/k)

An interlude: probabilistic counters

Tricks (2): Splitting trick

e Fix a splitting (hash) function s : Q — {0,..., k — 1} that
divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qx_1

@ o can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

@ Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

@ Space requirement k log(|Q2|/k)

@ Increasing k improves accuracy (in the limit, k = |Q2| and the
counter becomes exact!)

An interlude: probabilistic counters

Tricks (2): Splitting trick

e Fix a splitting (hash) function s : Q — {0,..., k — 1} that
divides the universe into k sub-universes of (approximately)
equal size Qq, ..., Qx_1

@ o can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

@ Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

@ Space requirement k log(|Q2|/k)

@ Increasing k improves accuracy (in the limit, k = |Q2| and the
counter becomes exact!)

@ Accuracy vs. space

An interlude: probabilistic counters

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.

it
-

«0O0)>» «F»r «Z» « Q>

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.

o It uses a log |Q| splitting. ..

it
-

«0O0)>» «F»r «Z» « Q>

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.

o It uses a log |Q| splitting. ..

o ... followed by a count of the leading zeroes

it
-

«40» «F»r « =) 4 Q>

DF (HyperLoglog) counters

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.
o It uses a log |Q] splitting. ..

o ...followed by a count of the leading zeroes

@ The maximum (splitwise) of such maxima is stored

An interlude: probabilistic counters

DF (HyperLoglog) counters

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.

It uses a log || splitting. . .
... followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

1.
standard error ~ ﬂ
m

if = mloglog |Q| bits are used

An interlude: probabilistic counters

DF (HyperLoglog) counters

Durand-Flajolet counters (2003) represent Q in ¢ = loglog || bits.

It uses a log || splitting. . .
... followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

1.
standard error ~ ﬂ
m

if = mloglog |Q| bits are used

“cardinalities up to 10° can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

