
Graph algorithms

Graph algorithms

Outline

Counting triangles

An interlude: probabilistic counters

Computing distances [and geometric centralities] in large
graphs using HyperBall

HyperBall on Facebook (a Milgram-like experiment)

Other applications of distances (in particular: robustness)

Graph algorithms

Counting triangles

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

i.e., the fraction of triples (y1, x , y2) formed by two edges that
form themselves a triangle.

Social networks exhibit a relatively large clustering coefficient,
compared to their diameter.

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

i.e., the fraction of triples (y1, x , y2) formed by two edges that
form themselves a triangle.

Social networks exhibit a relatively large clustering coefficient,
compared to their diameter.

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

i.e., the fraction of triples (y1, x , y2) formed by two edges that
form themselves a triangle.

Social networks exhibit a relatively large clustering coefficient,
compared to their diameter.

Counting triangles

Triangles and clustering

One of the distinguishing features of many complex (undirected)
networks is their relatively large clustering coefficient:

the clustering coefficient of a vertex x is the fraction of its
pairs of neighbors that are neighbors of each other

i.e., the fraction of triples (y1, x , y2) formed by two edges that
form themselves a triangle.

Social networks exhibit a relatively large clustering coefficient,
compared to their diameter.

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

cc(x) =
|{{y , z}|y , z ∈ N(x), y 6= z , y ∈ N(z)}|s(d(x)

2

)

A related notion is that of global clustering coefficient

ccG =

∑
x cc(x)

n
,

the average clustering coefficient of its vertices.

How can one efficiently compute or approximate the
local/global clustering coefficient?

Here we consider the local case

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

cc(x) =
|{{y , z}|y , z ∈ N(x), y 6= z , y ∈ N(z)}|s(d(x)

2

)
A related notion is that of global clustering coefficient

ccG =

∑
x cc(x)

n
,

the average clustering coefficient of its vertices.

How can one efficiently compute or approximate the
local/global clustering coefficient?

Here we consider the local case

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

cc(x) =
|{{y , z}|y , z ∈ N(x), y 6= z , y ∈ N(z)}|s(d(x)

2

)
A related notion is that of global clustering coefficient

ccG =

∑
x cc(x)

n
,

the average clustering coefficient of its vertices.

How can one efficiently compute or approximate the
local/global clustering coefficient?

Here we consider the local case

Counting triangles

Local vs. global clustering coefficient

As we said, the local clustering coefficient of a vertex x is

cc(x) =
|{{y , z}|y , z ∈ N(x), y 6= z , y ∈ N(z)}|s(d(x)

2

)
A related notion is that of global clustering coefficient

ccG =

∑
x cc(x)

n
,

the average clustering coefficient of its vertices.

How can one efficiently compute or approximate the
local/global clustering coefficient?

Here we consider the local case

Counting triangles

Triangles of an edge

Define, for every edge yz

T (yz) = |N(y) ∩ N(z)|.

This is the number of triangles that the edge yz closes.

From this, you can define

T (x) =
∑

y∈N(x)

T (xy),

hence

cc(x) =
T (x)

2
(d(x)

2

)
because T (x) counts every triangle twice. . .

Counting triangles

Triangles of an edge

Define, for every edge yz

T (yz) = |N(y) ∩ N(z)|.

This is the number of triangles that the edge yz closes.

From this, you can define

T (x) =
∑

y∈N(x)

T (xy),

hence

cc(x) =
T (x)

2
(d(x)

2

)
because T (x) counts every triangle twice. . .

Counting triangles

Triangles of an edge

Define, for every edge yz

T (yz) = |N(y) ∩ N(z)|.

This is the number of triangles that the edge yz closes.

From this, you can define

T (x) =
∑

y∈N(x)

T (xy),

hence

cc(x) =
T (x)

2
(d(x)

2

)
because T (x) counts every triangle twice. . .

Counting triangles

Triangles of an edge

Define, for every edge yz

T (yz) = |N(y) ∩ N(z)|.

This is the number of triangles that the edge yz closes.

From this, you can define

T (x) =
∑

y∈N(x)

T (xy),

hence

cc(x) =
T (x)

2
(d(x)

2

)
because T (x) counts every triangle twice. . .

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz ,

T (yz) = |N(y) ∩ N(z)|.

Recall the notion of Jaccard coefficient:

J(A,B) =
|A ∩ B|
|A ∪ B|

Equivalently:

1

J(A,B)
=
|A ∪ B|
|A ∩ B|

=
|A|+ |B| − |A ∩ B|

|A ∩ B|
=
|A|+ |B|
|A ∩ B|

− 1.

Hence

|A ∩ B| =
|A|+ |B|

1 + 1
J(A,B)

.

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz ,

T (yz) = |N(y) ∩ N(z)|.

Recall the notion of Jaccard coefficient:

J(A,B) =
|A ∩ B|
|A ∪ B|

Equivalently:

1

J(A,B)
=
|A ∪ B|
|A ∩ B|

=
|A|+ |B| − |A ∩ B|

|A ∩ B|
=
|A|+ |B|
|A ∩ B|

− 1.

Hence

|A ∩ B| =
|A|+ |B|

1 + 1
J(A,B)

.

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz ,

T (yz) = |N(y) ∩ N(z)|.

Recall the notion of Jaccard coefficient:

J(A,B) =
|A ∩ B|
|A ∪ B|

Equivalently:

1

J(A,B)
=
|A ∪ B|
|A ∩ B|

=
|A|+ |B| − |A ∩ B|

|A ∩ B|
=
|A|+ |B|
|A ∩ B|

− 1.

Hence

|A ∩ B| =
|A|+ |B|

1 + 1
J(A,B)

.

Counting triangles

Jaccard coefficient of an edge

The problem thus can be reduced to computing, for every edge yz ,

T (yz) = |N(y) ∩ N(z)|.

Recall the notion of Jaccard coefficient:

J(A,B) =
|A ∩ B|
|A ∪ B|

Equivalently:

1

J(A,B)
=
|A ∪ B|
|A ∩ B|

=
|A|+ |B| − |A ∩ B|

|A ∩ B|
=
|A|+ |B|
|A ∩ B|

− 1.

Hence

|A ∩ B| =
|A|+ |B|

1 + 1
J(A,B)

.

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz ,

J(yz) = J(N(y),N(z)),

after which

T (yz) =
d(y) + d(z)

1 + 1
J(yz)

.

Recall that

Theorem

Let A,B ⊆ Ω = {0, 1, . . . ,M − 1}, and let Π be the set of all M!
permutations of Ω. If π is drawn uniformly at random from Π

P[min(π(A)) = min(π(B))] = J(A,B).

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz ,

J(yz) = J(N(y),N(z)),

after which

T (yz) =
d(y) + d(z)

1 + 1
J(yz)

.

Recall that

Theorem

Let A,B ⊆ Ω = {0, 1, . . . ,M − 1}, and let Π be the set of all M!
permutations of Ω. If π is drawn uniformly at random from Π

P[min(π(A)) = min(π(B))] = J(A,B).

Counting triangles

Jaccard coefficient through min-wise permutations

So the problem is further reduced to computing, for every edge yz ,

J(yz) = J(N(y),N(z)),

after which

T (yz) =
d(y) + d(z)

1 + 1
J(yz)

.

Recall that

Theorem

Let A,B ⊆ Ω = {0, 1, . . . ,M − 1}, and let Π be the set of all M!
permutations of Ω. If π is drawn uniformly at random from Π

P[min(π(A)) = min(π(B))] = J(A,B).

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y),N(z)) is:

generate a random permutation (i.e., renumbering) π of the
nodes

compute minπ(N(y)) and minπ(N(z))

if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1’s to estimate J(N(y),N(z)).

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y),N(z)) is:

generate a random permutation (i.e., renumbering) π of the
nodes

compute minπ(N(y)) and minπ(N(z))

if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1’s to estimate J(N(y),N(z)).

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y),N(z)) is:

generate a random permutation (i.e., renumbering) π of the
nodes

compute minπ(N(y)) and minπ(N(z))

if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1’s to estimate J(N(y),N(z)).

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y),N(z)) is:

generate a random permutation (i.e., renumbering) π of the
nodes

compute minπ(N(y)) and minπ(N(z))

if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1’s to estimate J(N(y),N(z)).

Counting triangles

The algorithm (outline)

So, the idea to compute J(N(y),N(z)) is:

generate a random permutation (i.e., renumbering) π of the
nodes

compute minπ(N(y)) and minπ(N(z))

if the two values coincide, count +1

Repeat the above procedue many times, and use the fraction of
+1’s to estimate J(N(y),N(z)).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)
second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)
second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)
second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)

second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)
second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (outline)

Some further notes:

we have a counter per edge C [yz] (to count the number of
+1’s): we keep them on external memory

to know if minπ(N(y)) = minπ(N(z)) we must have
computed the minima before: we need two passes

first pass: generate the permutation π and compute the
minima minπN(−)) (kept in central memory)
second pass: increment the counters

we use hashing instead of permutations (equivalent, provided
that the probability of collision is negligible).

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do

generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N

for each x ∈ VG do
M[x]← miny∈N(x) h(y)

end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for

for each x ∈ VG do
for each y ∈ N(x) do

read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do

read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk

if M[x] = M[y] then
C [xy]← C [xy] + 1

end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if

write C [xy] to disk
end for

end for
end for

Counting triangles

The algorithm (1)

for K times do
generate a hash function h : VG → N
for each x ∈ VG do

M[x]← miny∈N(x) h(y)
end for
for each x ∈ VG do

for each y ∈ N(x) do
read C [xy] from disk
if M[x] = M[y] then

C [xy]← C [xy] + 1
end if
write C [xy] to disk

end for
end for

end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk
T (xy)← (d(x) + d(y))/(1 + K/C [xy])
T (x)← T (xy)

end for
cc(x)← T (x)/(d(x)2 − d(x))

end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk
T (xy)← (d(x) + d(y))/(1 + K/C [xy])
T (x)← T (xy)

end for
cc(x)← T (x)/(d(x)2 − d(x))

end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk

T (xy)← (d(x) + d(y))/(1 + K/C [xy])
T (x)← T (xy)

end for
cc(x)← T (x)/(d(x)2 − d(x))

end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk
T (xy)← (d(x) + d(y))/(1 + K/C [xy])

T (x)← T (xy)
end for
cc(x)← T (x)/(d(x)2 − d(x))

end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk
T (xy)← (d(x) + d(y))/(1 + K/C [xy])
T (x)← T (xy)

end for

cc(x)← T (x)/(d(x)2 − d(x))
end for

Counting triangles

The algorithm (2)

for each x ∈ VG do
T (x)← 0
for each y ∈ N(x) do

read C [xy] from disk
T (xy)← (d(x) + d(y))/(1 + K/C [xy])
T (x)← T (xy)

end for
cc(x)← T (x)/(d(x)2 − d(x))

end for

Counting triangles

An interlude: probabilistic counters

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

an approximate counter is like a counter (with primitives
“increment()” and “value()”) that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

a probabilistic counter is like a set (with primitives “add(x)”
and “size()”): it is called a counter because it can be used to
count the number of distinct elements in a stream [pioneer:
Flajolet 1985].

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

an approximate counter is like a counter (with primitives
“increment()” and “value()”) that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

a probabilistic counter is like a set (with primitives “add(x)”
and “size()”): it is called a counter because it can be used to
count the number of distinct elements in a stream [pioneer:
Flajolet 1985].

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

an approximate counter is like a counter (with primitives
“increment()” and “value()”) that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

a probabilistic counter is like a set (with primitives “add(x)”
and “size()”):

it is called a counter because it can be used to
count the number of distinct elements in a stream [pioneer:
Flajolet 1985].

An interlude: probabilistic counters

Probabilistic counter

Careful: the name is misleading, and similar to “approximate
counter”, but the two notions are different:

an approximate counter is like a counter (with primitives
“increment()” and “value()”) that uses exponentially less bits
than a standard counter and returns only approximate values,
with some probabilistic guarantee [pioneer: Morris 1978]

a probabilistic counter is like a set (with primitives “add(x)”
and “size()”): it is called a counter because it can be used to
count the number of distinct elements in a stream [pioneer:
Flajolet 1985].

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe Ω. The ADT has two
primitives:

“add(x)” to add an element x ∈ Ω to A

“size()” to get the (approximate) |A|

With |Ω| bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |Ω| or log log |Ω| bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than ε% with
probability not larger than. . . ”)

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe Ω. The ADT has two
primitives:

“add(x)” to add an element x ∈ Ω to A

“size()” to get the (approximate) |A|

With |Ω| bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |Ω| or log log |Ω| bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than ε% with
probability not larger than. . . ”)

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe Ω. The ADT has two
primitives:

“add(x)” to add an element x ∈ Ω to A

“size()” to get the (approximate) |A|

With |Ω| bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |Ω| or log log |Ω| bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than ε% with
probability not larger than. . . ”)

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe Ω. The ADT has two
primitives:

“add(x)” to add an element x ∈ Ω to A

“size()” to get the (approximate) |A|

With |Ω| bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |Ω| or log log |Ω| bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than ε% with
probability not larger than. . . ”)

An interlude: probabilistic counters

Probabilistic counters

ADT to represent a subset A of a universe Ω. The ADT has two
primitives:

“add(x)” to add an element x ∈ Ω to A

“size()” to get the (approximate) |A|

With |Ω| bits you can realize an exact (non-approximate) version
of this.

Probabilistic counters “in the marketplace” use much less (e.g.,
log |Ω| or log log |Ω| bits), and give only probabilistic guarantees on
the value (“the value differs from the real size more than ε% with
probability not larger than. . . ”)

An interlude: probabilistic counters

Probabilistic counters

Many solutions on the market! They differ by:

size vs. accuracy tradeoff

“quantity” of randomness needed

simplifying assumptions they take for granted.

An interlude: probabilistic counters

Probabilistic counters

Many solutions on the market! They differ by:

size vs. accuracy tradeoff

“quantity” of randomness needed

simplifying assumptions they take for granted.

An interlude: probabilistic counters

Probabilistic counters

Many solutions on the market! They differ by:

size vs. accuracy tradeoff

“quantity” of randomness needed

simplifying assumptions they take for granted.

An interlude: probabilistic counters

Probabilistic counters

Many solutions on the market! They differ by:

size vs. accuracy tradeoff

“quantity” of randomness needed

simplifying assumptions they take for granted.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}
Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}

Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}
Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}
Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}
Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters

Flajolet-Martin counters (1985) represent Ω in ` = log |Ω| bits.

We choose a hash function h : Ω→ {0, . . . , 2` − 1}
Assumption: elements of h(x) are uniformly distributed

Use a counter with ` bits (indices: 0, 1, . . . , `− 1)

“add(x)”: set to 1 the bit of index k where k is the number of
trailing zeroes in the binary representation of h(x)

“size()”: see below.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

FM counters (cont’d)

Let n = |A|. About n/2 of them are odd (i.e., have 0 trailing
zeroes), about n/4 end with 10, about n/8 end with 100. . .

if n/2k is large enough, probably the k-th bit was set.

in other words, if k � log2 n it is very likely that k was set. . .

. . . and, if k � log2 n it is very likely that k was not set.

=⇒ “size()”: Let k be the number of trailing 1’s; return
2k/0.77351

. . . Unbiased estimator.

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average! Variance reduces from
σ2 to σ2/T

Accuracy vs. time! [Or space, if you run the T solutions in parallel]

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average!

Variance reduces from
σ2 to σ2/T

Accuracy vs. time! [Or space, if you run the T solutions in parallel]

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average! Variance reduces from
σ2 to σ2/T

Accuracy vs. time! [Or space, if you run the T solutions in parallel]

An interlude: probabilistic counters

Tricks (1): Repetita iuvant

The probabilistic guarantee of the FM counter depends basically
on the choice of the hash function h: different choices of h
produce different estimates!

Basic (standard) solution to improve concentration: make T runs
(with different choices of h), and average! Variance reduces from
σ2 to σ2/T

Accuracy vs. time! [Or space, if you run the T solutions in parallel]

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

Tricks (2): Splitting trick

Fix a splitting (hash) function s : Ω→ {0, . . . , k − 1} that
divides the universe into k sub-universes of (approximately)
equal size Ω0, . . . ,Ωk−1

σ can just use the first log k bits of the hash function h,
leaving the remaining bits for the rest of the processing

Use k distinct counters for the k splits, applying the
appropriate counter every time a new element comes in

Space requirement k log(|Ω|/k)

Increasing k improves accuracy (in the limit, k = |Ω| and the
counter becomes exact!)

Accuracy vs. space

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

DF (HyperLogLog) counters

Durand-Flajolet counters (2003) represent Ω in ` = log log |Ω| bits.

It uses a log |Ω| splitting. . .

. . . followed by a count of the leading zeroes

The maximum (splitwise) of such maxima is stored

It is asymptotically almost unbiased with small error:

standard error ≈ 1.30

m

if ≈ m log log |Ω| bits are used

“cardinalities up to 109 can be approximated with up to 2% of
error in 1.5KB of memory!”

An interlude: probabilistic counters

