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Graphs: an ubiquitous notion

I Graphs appear everywhere: they are an extremely useful
formalism!

I Unfortunately: nomenclature and notation is not enough
standardized

I The purpose of this lesson is
I establishing the notation we shall be using in the future
I singling out some properties that will be of help
I providing some algorithmic highlight on graphs
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Graph

I A graph G = (NG ,AG ) is defined by a finite set of nodes NG

and by a set of arcs AG ⊆ NG × NG

I The subscript G is omitted when clear from the context

I This is sometimes called “network”, or “directed graph” or
“digraph”: I will add the adjective directed only when doubts
can arise

I Usually nG = |NG | and mG = |AG |. Of course 0 ≤ mG ≤ n2
G .
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Graph representation

I It is customary to represent graphically a graph, depicting
every node with a small circle and every arc (x , y) as a
directed arrow from x to y .

I Observe that there is no commitment as to where nodes
should be placed (the embedding used) or how arcs should be
drawn.
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I Drawing graphs “nicely” is by itself an important part of
graph theory.
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Arcs
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I An arc (x , y) is said to start (or stem) from x and to end on
y ; x is its source and y is its target

I We say that (x , y) is incident on x and y .

I y is a successor (or out-neighbor) of x

I x is a predecessor (or in-neighbor) of y
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Arcs
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I An arc of the form (x , x) is called a (self-)loop; graphs
without loops are called loopless (and may have at most
n(n − 1) arcs).

I Two arcs of the form (x , y) and (y , x) are called reciprocal of
each other

I IMPORTANT: it is impossible to have two parallel arcs with
the same source and target (if you need them, you should
resort to “multigraphs”)
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Transpose graphs

I Given a graph G , define its transpose as GT = (NG ,A
T
G )

where AT
G = {(y , x) | (x , y) ∈ AG}.

I Example:
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Symmetric graphs

I A graph is G symmetric iff G = GT . In symmetric graphs,
arcs come in pairs: every arc (x , y) correspond to an arc
(y , x).

I The pair of arcs {(x , y), (y , x)} is called an edge and may be
thought of as a set of (at most) two nodes {x , y}.

I This is how most people define undirected graphs: we shall
actually consider the latter as a synonym of “symmetric
(loopless)”.
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Symmetric graphs
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I Edges of an undirected graph can be thought of as elements
of
(V
2

)
I In undirected graphs, nodes are often called vertices.

I Notational problem: should mG denote the number of arcs or
the number of edges? I prefer to stick to arcs, and reserve eG
for the number of edges (that is mG/2, in the loopless case)
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Neighborhood, degrees

I We let N+
G (x) be the set of out-neighbors of x ; its cardinality,

d+(x), is called the out-degree of x

I We let N−
G (x) be the set of in-neighbors of x ; its cardinality,

d−(x), is called the in-degree of x

I For undirected graphs, we use NG (x) and dG (x)
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Paths

I In a graph G a path is a sequence of nodes π = 〈x0, x1, . . . , x`〉
such that (xi−1, xi ) ∈ AG for all i = 1, . . . , `

I |π| = ` is called the length of π

I π is called simple iff nodes are all distinct

I We say that π starts from x0 and ends in x`, and write
π : x0  x`

I We say that x` is reachable from x0 iff there is a path from x0
to x`
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Cycles

I In a graph G , a cycle is a nonempty path of length that starts
and ends in the same node.

I It is simple if no node (except for the starting/ending one) is
repeated.

I A graph is acyclic iff it contains no simple cycle.

I For undirected graph, the request is that a cycle be of length
≥ 3.
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Connected components

I For a given graph G , the relation  (reachability) is a
pre-order: it is reflexive and transitive.

I Its associated equivalence relation x ∼ y is defined by x  y
and y  x .

I The equivalence classes of ∼ are called the (strongly)
connected components of the graph.

I  is a partial order on the components (hence: it is acyclic).
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Connected components

I In an undirected graph, there are no edges between different
components!
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Graph traversal (visit)

I A general technique that is used to do “something” with the
nodes of a graph

I Traversals consider all the nodes of the graph exactly once, in
some order

I The order depends on the kind of visit
I At any moment, all nodes are classified into:

I unknown (white)
I frontier: known but unvisited (grey)
I visited (black)
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Visit: 1) initialization

I all nodes are initially white

I the frontier is empty

init(): Initialization
St[−]← white
F ← ∅
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Visit: 2) cycle

I provided that some nodes are used as seed. . .

I . . . i.e., initially set as grey put in the frontier

visit(): Perform a visit cycle
while F 6= ∅ do

x ← F .pick()
visit(x)
St[x ]← black
for y ∈ N+(x) do
if S [y ] = white then

St[y ]← grey
F .add(y)

end if
end for

end while
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Visit: 3) full visit

I performs a visit starting from the first white nodes

I at the end, all nodes are black

init()
for x ∈ N do
if St[x ] = white then
for x ∈ S do

St[x ]← grey
F .add(x)

end for
visit()

end if
end for
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Types of traversals

The type of traversal changes depending on the data structure
used for the frontier (i.e., implementation of the pick method).

I If F is a stack (LIFO), the visit is a depth-first search (DFS)

I If F is a queue (FIFO), the visit is a breadth-first search (BFS)

I Note: DFS can also be implemented with an implicit stack,
using recursion.
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Application example: shortest paths

Finding shortest paths (in unweighted graphs) from a given source
s.

I Perform a BFS from s.

I When a node enters the frontier, the node under visit is
marked as his parent: it is the next-to-last node in a shortest
path from s.

I Works perfectly even for directed graphs.
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Application example: components (undirected)

An example of application is finding the connected components of
an undirected graph

I Each single visit touches all (and only) the nodes of a single
component

I In this case, the visit order is irrelevant: any frontier
datastructure will do the job!
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Graph representations

The most trivial representation of a graph is its adjacency matrix:
0 0 1 1 0
1 0 0 1 1
0 1 1 0 0
0 0 0 0 0
1 1 0 1 0


I Requires n2 bits: very expensive for sparse graphs (i.e., when

m� n2)

I Obtaining the successors of a node requires time O(n)

I Knowing if (x , y) is an arc requires time O(1)
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Graph representations

Alternatively, one can use adjacency lists:

L[0] = 〈2, 3〉
L[1] = 〈0, 3, 4〉
L[2] = 〈1, 2〉
L[3] = 〈〉
L[4] = 〈0, 1, 3〉

I Requires m log n bits, plus the space for the offsets of every list

I Obtaining the successors of node x requires time O(|N+(x)|)
(amortized constant)

I Knowing if (x , y) is an arc requires time O(|N+(x)|)
(maximum degree, in the worst case, or n)
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