
Graph fundamentals

Paolo Boldi
DSI

LAW (Laboratory for Web Algorithmics)
Università degli Studi di Milan

Paolo Boldi Graph fundamentals

Graphs: an ubiquitous notion

I Graphs appear everywhere: they are an extremely useful
formalism!

I Unfortunately: nomenclature and notation is not enough
standardized

I The purpose of this lesson is
I establishing the notation we shall be using in the future
I singling out some properties that will be of help
I providing some algorithmic highlight on graphs

Paolo Boldi Graph fundamentals

Graph

I A graph G = (NG ,AG) is defined by a finite set of nodes NG

and by a set of arcs AG ⊆ NG × NG

I The subscript G is omitted when clear from the context

I This is sometimes called “network”, or “directed graph” or
“digraph”: I will add the adjective directed only when doubts
can arise

I Usually nG = |NG | and mG = |AG |. Of course 0 ≤ mG ≤ n2
G .

Paolo Boldi Graph fundamentals

Graph representation

I It is customary to represent graphically a graph, depicting
every node with a small circle and every arc (x , y) as a
directed arrow from x to y .

I Observe that there is no commitment as to where nodes
should be placed (the embedding used) or how arcs should be
drawn.

0

1 2

3 4

5

0

1

2 3

4
5

I Drawing graphs “nicely” is by itself an important part of
graph theory.

Paolo Boldi Graph fundamentals

Arcs

0

1 2

3 4

5

I An arc (x , y) is said to start (or stem) from x and to end on
y ; x is its source and y is its target

I We say that (x , y) is incident on x and y .

I y is a successor (or out-neighbor) of x

I x is a predecessor (or in-neighbor) of y

Paolo Boldi Graph fundamentals

Arcs

0

1 2

3 4

5

I An arc of the form (x , x) is called a (self-)loop; graphs
without loops are called loopless (and may have at most
n(n − 1) arcs).

I Two arcs of the form (x , y) and (y , x) are called reciprocal of
each other

I IMPORTANT: it is impossible to have two parallel arcs with
the same source and target (if you need them, you should
resort to “multigraphs”)

Paolo Boldi Graph fundamentals

Transpose graphs

I Given a graph G , define its transpose as GT = (NG ,A
T
G)

where AT
G = {(y , x) | (x , y) ∈ AG}.

I Example:

0

1 2

3 4

5

0

2

1 3

4

5

Paolo Boldi Graph fundamentals

Symmetric graphs

I A graph is G symmetric iff G = GT . In symmetric graphs,
arcs come in pairs: every arc (x , y) correspond to an arc
(y , x).

I The pair of arcs {(x , y), (y , x)} is called an edge and may be
thought of as a set of (at most) two nodes {x , y}.

I This is how most people define undirected graphs: we shall
actually consider the latter as a synonym of “symmetric
(loopless)”.

Paolo Boldi Graph fundamentals

Symmetric graphs

0

1 2

3 4

5

I Edges of an undirected graph can be thought of as elements
of
(V
2

)
I In undirected graphs, nodes are often called vertices.

I Notational problem: should mG denote the number of arcs or
the number of edges? I prefer to stick to arcs, and reserve eG
for the number of edges (that is mG/2, in the loopless case)

Paolo Boldi Graph fundamentals

Neighborhood, degrees

I We let N+
G (x) be the set of out-neighbors of x ; its cardinality,

d+(x), is called the out-degree of x

I We let N−
G (x) be the set of in-neighbors of x ; its cardinality,

d−(x), is called the in-degree of x

I For undirected graphs, we use NG (x) and dG (x)

Paolo Boldi Graph fundamentals

Paths

I In a graph G a path is a sequence of nodes π = 〈x0, x1, . . . , x`〉
such that (xi−1, xi) ∈ AG for all i = 1, . . . , `

I |π| = ` is called the length of π

I π is called simple iff nodes are all distinct

I We say that π starts from x0 and ends in x`, and write
π : x0 x`

I We say that x` is reachable from x0 iff there is a path from x0
to x`

Paolo Boldi Graph fundamentals

Cycles

I In a graph G , a cycle is a nonempty path of length that starts
and ends in the same node.

I It is simple if no node (except for the starting/ending one) is
repeated.

I A graph is acyclic iff it contains no simple cycle.

I For undirected graph, the request is that a cycle be of length
≥ 3.

Paolo Boldi Graph fundamentals

Connected components

I For a given graph G , the relation (reachability) is a
pre-order: it is reflexive and transitive.

I Its associated equivalence relation x ∼ y is defined by x y
and y x .

I The equivalence classes of ∼ are called the (strongly)
connected components of the graph.

I is a partial order on the components (hence: it is acyclic).

0

1

2

3 4

6

7

5

8 9

10

11

0

1

2

3 4

6

7

5

8 9

10

11

Paolo Boldi Graph fundamentals

Connected components

I In an undirected graph, there are no edges between different
components!

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7Paolo Boldi Graph fundamentals

Graph traversal (visit)

I A general technique that is used to do “something” with the
nodes of a graph

I Traversals consider all the nodes of the graph exactly once, in
some order

I The order depends on the kind of visit
I At any moment, all nodes are classified into:

I unknown (white)
I frontier: known but unvisited (grey)
I visited (black)

Paolo Boldi Graph fundamentals

Visit: 1) initialization

I all nodes are initially white

I the frontier is empty

init(): Initialization
St[−]← white
F ← ∅

Paolo Boldi Graph fundamentals

Visit: 2) cycle

I provided that some nodes are used as seed. . .

I . . . i.e., initially set as grey put in the frontier

visit(): Perform a visit cycle
while F 6= ∅ do

x ← F .pick()
visit(x)
St[x]← black
for y ∈ N+(x) do
if S [y] = white then

St[y]← grey
F .add(y)

end if
end for

end while

Paolo Boldi Graph fundamentals

Visit: 3) full visit

I performs a visit starting from the first white nodes

I at the end, all nodes are black

init()
for x ∈ N do
if St[x] = white then
for x ∈ S do

St[x]← grey
F .add(x)

end for
visit()

end if
end for

Paolo Boldi Graph fundamentals

Types of traversals

The type of traversal changes depending on the data structure
used for the frontier (i.e., implementation of the pick method).

I If F is a stack (LIFO), the visit is a depth-first search (DFS)

I If F is a queue (FIFO), the visit is a breadth-first search (BFS)

I Note: DFS can also be implemented with an implicit stack,
using recursion.

Paolo Boldi Graph fundamentals

Application example: shortest paths

Finding shortest paths (in unweighted graphs) from a given source
s.

I Perform a BFS from s.

I When a node enters the frontier, the node under visit is
marked as his parent: it is the next-to-last node in a shortest
path from s.

I Works perfectly even for directed graphs.

Paolo Boldi Graph fundamentals

Application example: components (undirected)

An example of application is finding the connected components of
an undirected graph

I Each single visit touches all (and only) the nodes of a single
component

I In this case, the visit order is irrelevant: any frontier
datastructure will do the job!

Paolo Boldi Graph fundamentals

Graph representations

The most trivial representation of a graph is its adjacency matrix:
0 0 1 1 0
1 0 0 1 1
0 1 1 0 0
0 0 0 0 0
1 1 0 1 0


I Requires n2 bits: very expensive for sparse graphs (i.e., when

m� n2)

I Obtaining the successors of a node requires time O(n)

I Knowing if (x , y) is an arc requires time O(1)

Paolo Boldi Graph fundamentals

Graph representations

Alternatively, one can use adjacency lists:

L[0] = 〈2, 3〉
L[1] = 〈0, 3, 4〉
L[2] = 〈1, 2〉
L[3] = 〈〉
L[4] = 〈0, 1, 3〉

I Requires m log n bits, plus the space for the offsets of every list

I Obtaining the successors of node x requires time O(|N+(x)|)
(amortized constant)

I Knowing if (x , y) is an arc requires time O(|N+(x)|)
(maximum degree, in the worst case, or n)

Paolo Boldi Graph fundamentals

