Compression techniques Text

Paolo Boldi, DSI, Università degli studi di Milano

Representing and compressing indices

- ▶ Recall that an inverted index for a given *corpus* may *contain*:
 - frequence: in how many documents a term appears;
 - pointers: in which documents a term appears;
 - counts: how many times a term appears in each document;
 - positions: where a term appears in each document (full text);
 - possibly other global data, like overall number of occurrences, average document length etc.
 - of course, the list of terms!
- probably, it will not contain: stopwords, hapax legomena;
- which codings should we use?

Compression codes

- For frequence and counting, it is only a matter to choose the right coding (usually γ);
- pointers and positions are encoded as gaps;
- depending on the model (or reference distribution) we will have different encodings:
- ▶ the most common model is *Bernoulli local*: every term with frequence f appears independently in every document with probability f/N;
- under this assumption, gaps have a geometric distribution (the number of trials before having a success in a Bernoulli distribution), so we should use Golomb.

Compression codes (cont'd)

- \blacktriangleright alternatively, we can use γ and δ (that are also universal);
- other codes also work very well (e.g., skewed Golomb), but have no theoretical explanation;
- ▶ in some cases, arithmetic coding is good.

Interpolative encoding

A kind of encoding that works pretty well for positions is interpolative coding.

- To encode the sequence $p_0 < p_1 < \cdots < p_{n-1}$ with lower and upper bound 0 e s, we encode $p_{n/2}$ by its position in the interval [0,s] using a (minimal) binary coding; then we encode recursively $p_0 < \cdots < p_{n/2-1}$ in $[0,p_{n/2}-1]$ and $p_{n/2+1} < \cdots < p_{n-1}$ in $[p_{n/2}+1,s]$. An empty list is encoded with ϵ .
- Problem (also in Golomb and arithmetic coding): it is necessary to know the size of the document beforehand.