
Web scraping and crawling,
open data, markup
languages and data shaping

Paolo Boldi
Dipartimento di Informatica
Università degli Studi di Milano

Data Analysis — Three steps

Data Analysis — Three steps

❖ In every data analysis process we can single out three
phases:

Data Analysis — Three steps

❖ In every data analysis process we can single out three
phases:

❖ harvesting

Data Analysis — Three steps

❖ In every data analysis process we can single out three
phases:

❖ harvesting

❖ indexing

Data Analysis — Three steps

❖ In every data analysis process we can single out three
phases:

❖ harvesting

❖ indexing

❖ querying / analyzing

Data Analysis — Three steps

❖ In every data analysis process we can single out three
phases:

❖ harvesting

❖ indexing

❖ querying / analyzing

❖ Example: search engine (harvesting=crawling)

Data: structured vs. unstructured

Data: structured vs. unstructured

❖ Data can come in with different degrees of structure

Data: structured vs. unstructured

❖ Data can come in with different degrees of structure

❖ Structured datasets (e.g. databases)

Data: structured vs. unstructured

❖ Data can come in with different degrees of structure

❖ Structured datasets (e.g. databases)

❖ Unstructured datasets (e.g. pure text)

Data: structured vs. unstructured

❖ Data can come in with different degrees of structure

❖ Structured datasets (e.g. databases)

❖ Unstructured datasets (e.g. pure text)

❖ Semi-structured dataset (e.g. XML)

Structured data
Typical example: relational databases

Structured data
Typical example: relational databases

Structured data
Typical example: relational databases“Find me the e-mail address of all users that ever ordered potatoes”

Structured data
Typical example: relational databases“Find me the e-mail address of all users that ever ordered potatoes”

SELECT DISTINCT Email FROM User  
NATURAL JOIN Order  

NATURAL JOIN LineItem 
NATURAL JOIN Product  

WHERE Product.Description LIKE “%potato%”

Structured data
Typical example: relational databases“Find me the e-mail address of all users that ever ordered potatoes”

SELECT DISTINCT Email FROM User  
NATURAL JOIN Order  

NATURAL JOIN LineItem 
NATURAL JOIN Product  

WHERE Product.Description LIKE “%potato%”

Structure => easy to specify  

exactly what you need

Unstructured data

Unstructured data

❖ Unstructured data: text, audio, images, video…

Unstructured data

❖ Unstructured data: text, audio, images, video…

❖ Information Retrieval (a.k.a., IR)

Unstructured data

❖ Unstructured data: text, audio, images, video…

❖ Information Retrieval (a.k.a., IR)

❖ Dates back to the 70s

Unstructured data

❖ Unstructured data: text, audio, images, video…

❖ Information Retrieval (a.k.a., IR)

❖ Dates back to the 70s

❖ Boosted by the advent of search engines

Semi-structured data

Semi-structured data

❖ Less structured than a database, more structured than
poor text

Semi-structured data

❖ Less structured than a database, more structured than
poor text

❖ Typical formats:

Semi-structured data

❖ Less structured than a database, more structured than
poor text

❖ Typical formats:

❖ markup languages (most notably: XML)

Semi-structured data

❖ Less structured than a database, more structured than
poor text

❖ Typical formats:

❖ markup languages (most notably: XML)

❖ JSON

Markup languages

Definition

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

❖ The added information can be of various kinds

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

❖ The added information can be of various kinds

❖ presentational (explains how the text should be rendered /
visualized / reproduced)

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

❖ The added information can be of various kinds

❖ presentational (explains how the text should be rendered /
visualized / reproduced)

❖ procedural (provides instructions to tools that will process the
text)

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

❖ The added information can be of various kinds

❖ presentational (explains how the text should be rendered /
visualized / reproduced)

❖ procedural (provides instructions to tools that will process the
text)

❖ descriptive (explains what the text means)

Definition
❖ A markup language is a language used to annotate text with extra-

textual information

❖ The added information can be of various kinds

❖ presentational (explains how the text should be rendered /
visualized / reproduced)

❖ procedural (provides instructions to tools that will process the
text)

❖ descriptive (explains what the text means)

❖ Sometimes the markup structure takes over

SGML example (docbook)
<article>
== A paper about ducks
 <articleinfo>
=== This paper talks about ducks
 <author>
 <firstname>Daffy</firstname>
 <surname>Duck</surname>
 </author>
 <volumenum>1234</volumenum>
 <chapter>
=== Chapter on how ducks are born
 === Female ducks
 Blablabla
 === Anatomy of female ducks
 Blablabla
 === Male ducks
 Blablabla
 <mediaobject>
 <imageobject>
 image::duck.png[]
 </imageobject>
 <textobject>
 <phrase>This is a nice duck</phrase>
 </textobject>
 </mediaobject>
……

XML example

<note>
 <date>
 <day>12</day>
 <month>11</month>
 <year>99</year>
 </date>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

HTML example

<html>
<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>
</html>

LaTeX example

\paragraph{Sets, integers, keys.} For every natural number
n, I let $[n]=\{\,0,1,\ldots,n-1\,\}$; I occasionally use the same notation
when n is a real number, omitting a ceiling operation.

In the following, I will always assume that a universe U of $u=|U|$ items
called \emph{keys} is fixed; this set may in many applications be infinite, but
unless otherwise specified I will suppose that it is finite. Occasionally, I assume
that U is endowed with a total order \leq.

Pre-history of markup

Pre-history of markup

❖ First examples of markup languages date back to the
60s (GenCode, troff and nroff)

Pre-history of markup

❖ First examples of markup languages date back to the
60s (GenCode, troff and nroff)

❖ Knuth’s TeX is one of the first typesetting systems
(especially aimed at mathematics)

SGML

SGML

❖ The first general-purpose markup language
(SGML=Standard Generalized Markup Language)
[1986]

SGML

❖ The first general-purpose markup language
(SGML=Standard Generalized Markup Language)
[1986]

❖ The language of choice for military, aerospace, technical,
industrial applications

SGML

❖ The first general-purpose markup language
(SGML=Standard Generalized Markup Language)
[1986]

❖ The language of choice for military, aerospace, technical,
industrial applications

❖ HTML used to be (until HTML 5) a DTD of SGML

SGML

❖ The first general-purpose markup language
(SGML=Standard Generalized Markup Language)
[1986]

❖ The language of choice for military, aerospace, technical,
industrial applications

❖ HTML used to be (until HTML 5) a DTD of SGML

❖ By now largely substituted by XML

HTML

HTML

❖ A markup language used to specify hypertexts
(HTML=HyperText Markup Language) [1993]

HTML

❖ A markup language used to specify hypertexts
(HTML=HyperText Markup Language) [1993]

❖ Born as a formatting language

HTML

❖ A markup language used to specify hypertexts
(HTML=HyperText Markup Language) [1993]

❖ Born as a formatting language

❖ Progressively transformed into a language that only
specifies the logical structure of a document (formatting
is specified separately, typically through CSS)

HTML, SGML, XML

HTML, SGML, XML

❖ Originally HTML was a DTD (a special case) of SGML

HTML, SGML, XML

❖ Originally HTML was a DTD (a special case) of SGML

❖ Now HTML and SGML are different (non-related)
markup languages

HTML, SGML, XML

❖ Originally HTML was a DTD (a special case) of SGML

❖ Now HTML and SGML are different (non-related)
markup languages

❖ XML is different from both, but there exists a XML
version of HTML called XHTML (that browsers
support)

HTML, SGML, XML

❖ Originally HTML was a DTD (a special case) of SGML

❖ Now HTML and SGML are different (non-related)
markup languages

❖ XML is different from both, but there exists a XML
version of HTML called XHTML (that browsers
support)

❖ In a way, though, HTML can be thought of as X(H)TML

A brief introduction to XML 
and XPath

XML

XML

❖ XML=Extensible Markup Language

XML

❖ XML=Extensible Markup Language

❖ A way to specify a (semi-structured) document

XML

❖ XML=Extensible Markup Language

❖ A way to specify a (semi-structured) document

❖ A document is the textual representation of a tree

XML (tree view)

XML (tree view)

XML (tree view)
❖ Nodes of the tree are called elements

XML (tree view)
❖ Nodes of the tree are called elements

❖ The starting point of the tree is called root

XML (tree view)
❖ Nodes of the tree are called elements

❖ The starting point of the tree is called root

❖ Each element may have one or more children:

XML (tree view)
❖ Nodes of the tree are called elements

❖ The starting point of the tree is called root

❖ Each element may have one or more children:

❖ children can be other elements…

XML (tree view)
❖ Nodes of the tree are called elements

❖ The starting point of the tree is called root

❖ Each element may have one or more children:

❖ children can be other elements…

❖ …or text

XML (tree view)
❖ Nodes of the tree are called elements

❖ The starting point of the tree is called root

❖ Each element may have one or more children:

❖ children can be other elements…

❖ …or text

❖ Elements may further be decorated with attributes
(name/value pairs)

XML (text view)

XML (text view)
❖ Every element is enclosed between a start-tag and an

end-tag:  
<bookstore>  
 ……  
</bookstore>

XML (text view)
❖ Every element is enclosed between a start-tag and an

end-tag:  
<bookstore>  
 ……  
</bookstore>

❖ Attributes are specified in the start-tag:  
<person gender=“male” ethnicity=“caucasian”>  
 ……  
</person>

Example
<?xml version="1.0"?>

<note>

<date>

<day>12</day>

<month>11</month>

<year>99</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Example
<?xml version="1.0"?>

<note>

<date>

<day>12</day>

<month>11</month>

<year>99</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

note

date to heading bodyfrom

yearmonthday

Example
<?xml version="1.0"?>

<note>

<date>

<day>12</day>

<month>11</month>

<year>99</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

note

date to heading bodyfrom

yearmonthday

12 11 99

Tove

Jani

Reminder

Don’t forget me this weekend!

Example (with attributes)
<?xml version="1.0"?>

<note type=“urgent”>

<date>

<day>12</day>

<month>11</month>

<year>99</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

yearmonthday

note  
type=“urgent”

date to heading bodyfrom

12 11 99

Tove

Jani

Reminder

Don’t forget me this weekend!

XML elements and attributes

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

❖ A well-formed XML document doesn’t need:

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

❖ A well-formed XML document doesn’t need:

❖ a list of allowed elements and/or attributes

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

❖ A well-formed XML document doesn’t need:

❖ a list of allowed elements and/or attributes

❖ a specification of which elements can be enclosed in
which other elements etc…

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

❖ A well-formed XML document doesn’t need:

❖ a list of allowed elements and/or attributes

❖ a specification of which elements can be enclosed in
which other elements etc…

❖ A valid document requires that one specifies a schema
(typically, a DTD=Document Type Definition)

XML elements and attributes
❖ XML distinguishes between well-formedness and validity

❖ A well-formed XML document doesn’t need:

❖ a list of allowed elements and/or attributes

❖ a specification of which elements can be enclosed in
which other elements etc…

❖ A valid document requires that one specifies a schema
(typically, a DTD=Document Type Definition)

❖ We will only look at well-formedness, not validity

Example: an XML document
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Example: an XML document
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

<A>

<A>

<A>a
b
<A>c

<A>

<C>

<C>d</C>

</C>
<D>

<A>

</D>

Example: an XML document  
(with empty tags for empty elements)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Example: an XML document  
(with empty tags for empty elements)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

<A>

<A>

<A>a
b
<A>c

<A>

<C>

<C>d</C>

</C>
<D>

<A>

</D>

Example: an XML document  
(with empty tags for empty elements)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

<A>

<A/>

<A>a
b
<A>c

<A/>

<C>

<C>d</C>

</C>
<D>

<A/>

</D>

Online resource
http://countwordsfree.com/xmlviewer

http://countwordsfree.com/xmlviewer

Online resource
http://countwordsfree.com/xmlviewer

<A>

<A>

<A>a
b
<A>c

<A>

<C>

<C>d</C>

</C>
<D>

<A>

</D>

http://countwordsfree.com/xmlviewer

Online resource
http://countwordsfree.com/xmlviewer

http://countwordsfree.com/xmlviewer

XML

XML

❖ An XML document has more structure than a simple
text document

XML

❖ An XML document has more structure than a simple
text document

❖ One can write queries using suitable query languages

XML

❖ An XML document has more structure than a simple
text document

❖ One can write queries using suitable query languages

❖ XPath is one such language

XPath idea

XPath idea

❖ Many types of queries; the most important is called a
location path

XPath idea

❖ Many types of queries; the most important is called a
location path

❖ Given an XPath location path query and an XML
document, the query selects (zero, one or many) nodes in
the document

XPath idea

❖ Many types of queries; the most important is called a
location path

❖ Given an XPath location path query and an XML
document, the query selects (zero, one or many) nodes in
the document

❖ Other types of queries return strings or other values

XPath location paths

XPath location paths
❖ We only consider absolute location paths

XPath location paths
❖ We only consider absolute location paths

❖ An absolute path identifies a set of nodes in the XML tree

XPath location paths
❖ We only consider absolute location paths

❖ An absolute path identifies a set of nodes in the XML tree

❖ Syntax (full):

XPath location paths
❖ We only consider absolute location paths

❖ An absolute path identifies a set of nodes in the XML tree

❖ Syntax (full):

❖ /step/step/step…

XPath location paths
❖ We only consider absolute location paths

❖ An absolute path identifies a set of nodes in the XML tree

❖ Syntax (full):

❖ /step/step/step…

❖ where step is

XPath location paths
❖ We only consider absolute location paths

❖ An absolute path identifies a set of nodes in the XML tree

❖ Syntax (full):

❖ /step/step/step…

❖ where step is

❖ axis::node_test[predicate][predicate]… (the predicate
part is optional)

Meaning of a step

Meaning of a step
❖ You can think of a location path as a way to identify a set

of (zero, one or more) nodes, called current nodes

Meaning of a step
❖ You can think of a location path as a way to identify a set

of (zero, one or more) nodes, called current nodes

❖ Each step modifies the set of current nodes, depending
on

Meaning of a step
❖ You can think of a location path as a way to identify a set

of (zero, one or more) nodes, called current nodes

❖ Each step modifies the set of current nodes, depending
on

❖ axis: direction where we should move

Meaning of a step
❖ You can think of a location path as a way to identify a set

of (zero, one or more) nodes, called current nodes

❖ Each step modifies the set of current nodes, depending
on

❖ axis: direction where we should move

❖ node_test: select only nodes with a specific name

Meaning of a step
❖ You can think of a location path as a way to identify a set

of (zero, one or more) nodes, called current nodes

❖ Each step modifies the set of current nodes, depending
on

❖ axis: direction where we should move

❖ node_test: select only nodes with a specific name

❖ predicate: further filter the nodes according to a
certain boolean function

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*  
 
(“select all children nodes”)

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*  
 
(“select all children nodes”)

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*  
 
(“select all children nodes”)

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::A  
 
(“select all A children nodes”)

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::A  
 
(“select all A children nodes”)

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::A  
 
(“select all A children nodes”)

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*[position()>1]  
 
(“select all children nodes in
positions larger than 1 (i.e.,
all except the first child)”)

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*[position()>1]  
 
(“select all children nodes in
positions larger than 1 (i.e.,
all except the first child)”)

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: child (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
child::*[position()>1]  
 
(“select all children nodes in
positions larger than 1 (i.e.,
all except the first child)”)

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
descendant::*  
 
(“select all descendant nodes”)

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
descendant::*  
 
(“select all descendant nodes”)

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: descendant
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
descendant::*  
 
(“select all descendant nodes”)

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
ancestor::*  
 
(“select all descendant nodes,
including the current node”)

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
ancestor::*  
 
(“select all ancestor nodes”)

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: ancestor
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
ancestor::*  
 
(“select all ancestor nodes”)

Axis: descendant-or-self
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: descendant-or-self

Step  
 
 
descendant-or-self::*  
 
(“select all descendant nodes,
including the current node”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: descendant-or-self
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
descendant-or-self::*  
 
(“select all descendant nodes,
including the current node”)

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
following-sibling::*  
 
(“select all following sibling
nodes”)

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
following-sibling::*  
 
(“select all following sibling
nodes”)

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Axis: following-sibling
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Step  
 
 
following-sibling::*  
 
(“select all following sibling
nodes”)

XPath example (1)

XPath example (1)

Query:  
 
 
/  
 
(“select the root node”)

XPath example (1)

Query:  
 
 
/  
 
(“select the root node”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (1)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Query:  
 
 
/  
 
(“select the root node”)

XPath example (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (2)

Query:  
 
 
/descendant::B  
 
(“select all B descendants of
the root”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (2)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Query:  
 
 
/descendant::B  
 
(“select all B descendants of
the root”)

XPath example (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (3)

Query:  
 
 
/descendant::B/child::A  
 
(“select all A children of a B
descendant of the root”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (3)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Query:  
 
 
/descendant::B/child::A  
 
(“select all A children of a B
descendant of the root”)

XPath example (4)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (4)

Query:  
 
 
/child::*/child::*/child::A  
 
(“select all A grandchildren of
the root”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (4)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (5)
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (5)

Query:  
 
 
/descendant::B/child::*[position()=1]  
 
(“select all first children of
a B node that is a descendant
of the root”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

XPath example (5)

Query:  
 
 
/descendant::B/child::*[position()=1]  
 
(“select all first children of
a B node that is a descendant
of the root”)

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Main axes

self

parent

child

ancestor

descendant

ancestor-or-self

descendant-or-self

following-sibling

preceding-sibling

Abbreviated syntax

Abbreviated syntax

❖ “child” axes can be omitted

Abbreviated syntax

❖ “child” axes can be omitted

❖ ::* can be omitted

Abbreviated syntax

❖ “child” axes can be omitted

❖ ::* can be omitted

❖ // stands for /descendant-or-self::*/

Abbreviated syntax

❖ “child” axes can be omitted

❖ ::* can be omitted

❖ // stands for /descendant-or-self::*/

❖ /../ stands for /parent::*/

Abbreviated syntax

❖ “child” axes can be omitted

❖ ::* can be omitted

❖ // stands for /descendant-or-self::*/

❖ /../ stands for /parent::*/

❖ [x] stands for [position()=x]

Abbreviated syntax

Regular syntax Abbreviated syntax

/descendant::B/child::A /descendant::B/A

/descendant-or-self::olist/child::item //olist/item

/child::doc/child::chapter[position()=5]/child::section[position()=2] /doc/chapter[5]/section[2]

After locating a node…

After locating a node…

❖ …one can get its attribute(s), with the syntax  
 
 attribute::xyz (abbreviated: @xyz)

After locating a node…

❖ …one can get its attribute(s), with the syntax  
 
 attribute::xyz (abbreviated: @xyz)

❖ …or its text children, with the syntax  
 
 text()

Getting text
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Getting text

Query:  
 
 
/descendant::B/text()
 
returns: [“b”]

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Getting text

Query:  
 
 
/descendant::B/text()
 
returns: [“b”]

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Getting text
A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Getting text

Query:  
 
 
//child::*[position()=1]/text()
 
returns: [“a”,”d”]

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Getting text

Query:  
 
 
//child::*[position()=1]/text()
 
returns: [“a”,”d”]

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

A

B

A B A

C

B

D

A B B

A A C

a

b

c
d

Online resource
https://www.freeformatter.com/xpath-tester.html

https://www.freeformatter.com/xpath-tester.html

Online resource
https://www.freeformatter.com/xpath-tester.html

<A>

<A/>

<A>a
b
<A>c

<A/>

<C>

<C>d</C>

</C>
<D>

<A/>

</D>

https://www.freeformatter.com/xpath-tester.html

Web scraping

Web scraping

Web scraping

❖ Conceptually it amounts to

Web scraping

❖ Conceptually it amounts to

❖ downloading a set of web pages (crawling)

Web scraping

❖ Conceptually it amounts to

❖ downloading a set of web pages (crawling)

❖ extracting information from the downloaded web
pages

Web scraping

❖ Conceptually it amounts to

❖ downloading a set of web pages (crawling)

❖ extracting information from the downloaded web
pages

❖ The two activities influence each other

Web scraping

❖ Conceptually it amounts to

❖ downloading a set of web pages (crawling)

❖ extracting information from the downloaded web
pages

❖ The two activities influence each other

❖ extracting information can prompt to downloading
more pages, etc. (like in a web crawler)

Web scraping

Web scraping

❖ Taxonomy

Web scraping

❖ Taxonomy

❖ breadth of search (how many webpages are targeted?)

Web scraping

❖ Taxonomy

❖ breadth of search (how many webpages are targeted?)

❖ depth of search (how complex is the type of
information to be gathered?)

Web scraping

❖ Taxonomy

❖ breadth of search (how many webpages are targeted?)

❖ depth of search (how complex is the type of
information to be gathered?)

❖ interaction with human operator (fully automated?
partly manual? totally manual?)

Scraping vs. crawling

Scraping vs. crawling
❖ Crawling is usually aimed at bulk download of pages from

unknown websites and of unknown content

Scraping vs. crawling
❖ Crawling is usually aimed at bulk download of pages from

unknown websites and of unknown content

❖ Almost no attempt to information extraction (apart for indexing)

Scraping vs. crawling
❖ Crawling is usually aimed at bulk download of pages from

unknown websites and of unknown content

❖ Almost no attempt to information extraction (apart for indexing)

❖ Scraping is targeted to smaller sets of pages (e.g., single websites) or
to specific information targets (e.g., collecting e-mail addresses
[contact scraping])

Scraping vs. crawling
❖ Crawling is usually aimed at bulk download of pages from

unknown websites and of unknown content

❖ Almost no attempt to information extraction (apart for indexing)

❖ Scraping is targeted to smaller sets of pages (e.g., single websites) or
to specific information targets (e.g., collecting e-mail addresses
[contact scraping])

❖ In both cases, specific forms of pattern matching are required

Scraping vs. crawling
❖ Crawling is usually aimed at bulk download of pages from

unknown websites and of unknown content

❖ Almost no attempt to information extraction (apart for indexing)

❖ Scraping is targeted to smaller sets of pages (e.g., single websites) or
to specific information targets (e.g., collecting e-mail addresses
[contact scraping])

❖ In both cases, specific forms of pattern matching are required

❖ Often, scraping is an activity that depends strongly on the
structure of the HTML pages that are being visited

Is scraping legal?

Is scraping legal?
❖ It may violate the terms of use of some websites. Enforceability is

less obvious, though…

Is scraping legal?
❖ It may violate the terms of use of some websites. Enforceability is

less obvious, though…

❖ United States: unclear… Scrapers can be accused of trespass to
chattel [“violazione di proprietà”], but it is difficult to prove that
the scraping caused a damage to the plaintiff [“querelante”]

Is scraping legal?
❖ It may violate the terms of use of some websites. Enforceability is

less obvious, though…

❖ United States: unclear… Scrapers can be accused of trespass to
chattel [“violazione di proprietà”], but it is difficult to prove that
the scraping caused a damage to the plaintiff [“querelante”]

❖ Australia: some form of scraping (e.g. contact scraping) have
been declared illegal

Is scraping legal?
❖ It may violate the terms of use of some websites. Enforceability is

less obvious, though…

❖ United States: unclear… Scrapers can be accused of trespass to
chattel [“violazione di proprietà”], but it is difficult to prove that
the scraping caused a damage to the plaintiff [“querelante”]

❖ Australia: some form of scraping (e.g. contact scraping) have
been declared illegal

❖ EU: some sentences seem to be in favour of crawling, but in a
contradictory way

Scraping social networks

Scraping social networks

❖ Scraping social networks (facebook, twitter etc.) is
typically illegal and unadvisable

Scraping social networks

❖ Scraping social networks (facebook, twitter etc.) is
typically illegal and unadvisable

❖ Social networking platforms offer usually specific APIs
to access to (some of their) data

Scraping social networks

❖ Scraping social networks (facebook, twitter etc.) is
typically illegal and unadvisable

❖ Social networking platforms offer usually specific APIs
to access to (some of their) data

❖ Scraping / crawling should only be used to extract
information from websites that do not offer this kind of
services

