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What do we mean by. . .

. . . “storing the web graph”?

I Having a data structure that allows you, for a given node, to
know its successors.

I Possibly: having a way to know which URL corresponds to a
given node and vice versa.
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What do we mean by. . .

. . . “storing the web graph”?

I Having a data structure that allows you, for a given node, to
know its successors.

I Possibly: having a way to know which URL corresponds to a
given node and vice versa.

We will study good data structures for the URL 7→ node map. The
other one (less useful) is not covered here.
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Information-theoretical lower bound

How much space do we need to store a graph with n nodes and m
arcs?

Not less than

log

(
n2

m

)
≈ m log

(
n2

m

)
+ O(m)

under the hypothesis that m = o(n2)

m log
(n
d

)
+ O(m)

where d = m/n is the average degree.
This means about log(n/d) + O(1) bits per arc. But social (web)
graphs are NOT random graphs!.
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Naive representation

0 1 2 3 4 5 6 7 8 9 10 m−1

0 3 8 104 4offset

3 7 2 27 3 4 7 712 14 15 ........succ

0 1 2 3 4 5

........

n−1

The offset vector tells, for each given node x , where the successor
list of x starts from. Implicitly, it also gives the degree of each
node.
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Naive representation

How much space does this representation take?

I Successor array: m elements (arcs), each containing a node
(log n bits); with 32 bits, we can store up to 4 billion nodes
(half of it, if we don’t have unsigned types)

I Offset array: n elements (nodes), each containing an index in
the successor array (logm bits); with 32 bits, we can store up
t 4 billion arcs.
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Naive representation

How much space does this representation take?

I Successor array: m elements (arcs), each containing a node
(log n bits); with 32 bits, we can store up to 4 billion nodes
(half of it, if we don’t have unsigned types)

I Offset array: n elements (nodes), each containing an index in
the successor array (logm bits); with 32 bits, we can store up
t 4 billion arcs.

All in all, 32(n + m) bits. If we assume m = 8n (a very modest
assumption on the outdegree), we need 288n bits, i.e., 288
bits/node, 36 bits/arc.
We show how to reduce this of an order of magnitude.
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Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

I be instantaneously decodable

I minimize the expected bitlength.
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Idea

Use a variable-length representation for successors. Such a
representation should obviously. . .

I be instantaneously decodable

I minimize the expected bitlength.

What about the offset array?

I bit displacement vs. byte displacement (with alignment)

I we have to keep an explicit representation of the node degrees
(e.g., in the successor array, before every successsor list).
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Variable-length representation

0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

3 73 12 14 5 2

0 20offset

0 1 2 3

........

n−1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 37 38 39 40

succ

33 33

........

2

Node degrees (blue background), followed by successors. Each
number is represented using an instantaneous code (possibly,
different for degree and successors).
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Instantaneous code

I An instantaneous (binary) code for the set S is a function
c : S → {0, 1}∗ such that, for all x , y ∈ S , if c(x) is a prefix
of c(y), then x = y .

I Let lx be the length (in bits) of c(x).

I Kraft-McMillan: there exists an instantaneous code with
lengths lx (x ∈ S) if and only if∑

x∈S
2−lx ≤ 1.
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Intended distribution

I If p : S → [0, 1] is the probability distribution of the source,
than the ideal code for S is such that (Shannon)

lx = − log p(x)

(all logarithms are in base 2).

I So a code with lengths lx has intended distribution

p(x) = 2−lx .

I The choice of the code to use will be based on the expected
distribution of the data.
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Fixed-length coding

I If S = {1, 2, . . . ,N}, to represent an element of S it is
sufficient to use dlogNe bits.

I The fixed-length representation for S uses exactly that
number of bits for every element (and represents x using the
standard binary coding of x − 1 on dlogNe bits).

I Intended distribution:

p(x) = 2−dlogNe uniform distribution.
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Unary coding

I If S = N, one can represent x ∈ S writing x zeroes followed
by a one.

I So lx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution of ratio 1/2.
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Unary coding

I If S = N, one can represent x ∈ S writing x zeroes followed
by a one.

I So lx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution of ratio 1/2.

0 1
1 01
2 001
3 0001
4 00001
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A more general viewpoint

Unary coding can be seen as a special case of a more general kind
of coding for N. Suppose you group N into slots: every slot is
made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).
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made by consecutive integers; let

V = 〈s1, s2, s3, . . . 〉

be the slot sizes (in the unary case s1 = s2 = · · · = 1).
Then, to represent x ∈ N one can

I encode in unary the index i of the slot containing x ;

I encode in binary the offset of x within its slot (using dlog sie
bits).
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Golomb coding

Golomb coding with modulus b is obtained choosing

V = 〈b, b, b, . . . 〉.

To represent x ∈ N you need to specify the slot where x falls (that
is, bx/bc) in unary, and then represent the offset using dlog be bits
(or blog bc bits).
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Golomb coding

Golomb coding with modulus b is obtained choosing

V = 〈b, b, b, . . . 〉.

To represent x ∈ N you need to specify the slot where x falls (that
is, bx/bc) in unary, and then represent the offset using dlog be bits
(or blog bc bits).
So

lx =
⌊x
b

⌋
+ dlog be.

The intended distribution is

p(x) = 2−lx ∝ (21/b)−x geometric distribution of ratio 1/
b
√

2.
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More precisely. . .

A finer analysis shows that Golomb coding is optimal (=Huffman)
for a geometric distribution of ratio p, provided that b is chosen as

b =

⌈
log(2− p)

− log(1− p)

⌉
.

0 10
1 110
2 111
3 010
4 0110
5 0111
6 0010
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Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).

Paolo Boldi, DSI, Università degli studi di Milano Compression techniques



Compressed codings
Web Graph Compression

Implementative issues
From web graphs to social networks

Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits).
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Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits). So

lx = 1 + 2blog xc =⇒ p(x) ∝ 1

2x2
(Zipf of exponent 2)
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Elias’ γ

Elias’ γ coding of x ∈ N+ is obtained by representing x in binary
preceded by a unary representation of its length (minus one).
More precisely, to represent x we write in unary blog xc and then in
binary x − 2dlog xe (on blog xc bits). So

lx = 1 + 2blog xc =⇒ p(x) ∝ 1

2x2
(Zipf of exponent 2)

1 1
2 010
3 011
4 00100
5 00101
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Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ.
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Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ.
So

lx = 1 + 2blog log xc+ blog xc =⇒ p(x) ∝ 1

2x(log x)2
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Elias’ δ

Elias’ δ coding of x ∈ N+ is obtained by representing x in binary
preceded by a representation of its length in γ.
So

lx = 1 + 2blog log xc+ blog xc =⇒ p(x) ∝ 1

2x(log x)2

1 1
2 0100
3 0101
4 01100
5 01101
6 00100000
7 00100001
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An alternative way. . .

. . . to think of γ coding is that x is represented using its usual
binary representation (except for the initial “1”, which is omitted),
with every bit “coming with” a continuation bit, that tells whether
the representation continues or whether it stops there.
For example (up to bit permutation) γ coding of 724 (in binary:
1011010100) is

0 1 1 0 1 0 1 0 01 1 1 1 1 1 1 1 0
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k-bit-variable coding

What happens if we group digits k by k?

0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 00

000110110

0

111100

000110101110

0001011011
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k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.
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k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.
So

lx = (k+1)(dlog(x)/ke) =⇒ p(x) ∝ x−(k+1)/k(Zipf (k + 1)/k)
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k-bit-variable coding (cont’d)

For x , we use dlog(x)/ke bits for the unary part, and the same
number of bits multiplied by k for the binary part.
So

lx = (k+1)(dlog(x)/ke) =⇒ p(x) ∝ x−(k+1)/k(Zipf (k + 1)/k)

A more efficient variant: the ζk codes (for Zipf 1→ 2).

γ = ζ1 ζ2 ζ3 ζ4
1 1 10 100 1000
2 010 110 1010 10010
3 011 111 1011 10011
4 00100 01000 1100 10100
5 00101 01001 1101 10101
6 00110 01010 1110 10110
7 00111 01011 1111 10111
8 0001000 011000 0100000 11000
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Comparing codings

Unaria = Golomb 1
Golomb 3
gamma=1-var
3-var
delta

Legend

.1e–2

.1e–1

.1

1.

2. 4. 7. .1e2
x
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Coding techniques. . .

. . . alone do not improve on compression: we have first to
guarantee that the data we represent have a distribution close to
the intended one (depending on the coding we are going to use).
In particular, they have to enjoy a monotonic distribution (smaller
values are more probable than larger ones).

I BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

I Degrees are distributed like a Zipf of exponent ≈ 2.7: they
can be safely encoded using γ.

I What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?
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values are more probable than larger ones).

I BTW: some codings (e.g., Elias γ and δ) are universal: for
whatever monotonic distribution, they guarantee an expected
length that is only within a constant factor of the optimal one.

I Degrees are distributed like a Zipf of exponent ≈ 2.7: they
can be safely encoded using γ.

I What about successors? Let us assume that successors of x
are y1, . . . , yk : how should we encode y1, . . . , yk?
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Locality

In general, we cannot say much about their distribution, unless we
make some assumption on the way in which nodes are ordered.

I Many hypertextual links contained in a web page are
navigational (“home”, “next”, “up”. . . ). If we compare the
URL they refer to with that of the page containing them, they
share a long common prefix. This property is known as
locality and it was first observed by the authors of the
Connectivity Server.

I To exploit this property, assume that URLs are ordered
lexicographically (that is, node 0 is the first URL in
lexicographic order, etc.). Then, if x → y is an arc, most of
the times |x − y | will be “small”.
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Exploiting locality

If x has successors y1 < y2 < · · · < yk , we represent its successor
list though the gaps (differentiation):

y1 − x , y2 − y1 − 1, . . . , yk − yk−1 − 1

(only the first value can be negative: wa make it into a natural
number. . . ). How are such differences distributed?
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Zipf with exponent 1.2 =⇒ we use ζ3.
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Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
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Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
We may encode the successor list of x as follows:

I we write the differences with respect to the successor list of
some previous node x − r (called the reference node)

I we explicitly encode (as before) only the successors of x that
were not successors of x − r .

Paolo Boldi, DSI, Università degli studi di Milano Compression techniques



Compressed codings
Web Graph Compression

Implementative issues
From web graphs to social networks

Similarity

URLs close to each other (in lexicographic order) have similar
successor sets: this fact (known as similarity) was exploited for the
first time in the Link database.
We may encode the successor list of x as follows:

I we write the differences with respect to the successor list of
some previous node x − r (called the reference node)

I we explicitly encode (as before) only the successors of x that
were not successors of x − r .
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Similarity (cont’d)

More explicitly, the successor list of x is encoded as (referencing):

I an intger r (reference): if r > 0, the list is described by
difference with respect to the successor list of x − r ; in this
case, we write a bitvector (of length equal to d+(x − r))
discriminating the elements in N+(x − r) ∩ N+(x) from the
ones in N+(x − r) \ N+(x)

I an explicit list of extra nodes, containing the elements of
N+(x) \ N+(x − r) (or the whole N+(x), if r = 0), encoded
as explained before.
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Referencing example

Node Outdegree Successors
. . . . . . . . .
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
. . . . . . . . .

Node Outd. Ref. Copy list Extra nodes
. . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
. . . . . . . . . . . . . . .
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Blocks (differential compression)

Instead of using a bitvector, we use run-length encoding, telling
the length of successive runs (blocks) of “0” and “1”:
Node Outd. Ref. Copy list Extra nodes
. . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
. . . . . . . . . . . . . . .
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Blocks (differential compression)

Instead of using a bitvector, we use run-length encoding, telling
the length of successive runs (blocks) of “0” and “1”:
Node Outd. Ref. Copy list Extra nodes
. . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
. . . . . . . . . . . . . . .

Node Outd. Ref. # blocks Copy blocks Extra nodes
. . . . . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
. . . . . . . . . . . . . . . . . .
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Consecutivity

Among the extra nodes, many happen to sport the consecutivity
property: they appear in clusters of consecutive integers. This
phenomenon, observed empirically, have some possible
explanations:

I most pages contain groups of navigational links that
correspond to a certain hierarchical level of the website, and
are often consecutive to one another;

I in the transpose graph, moreover, consecutivity is the dual of
similarity with reference 1: when there is a cluster of
consecutive pages with many similar links, in the transpose
there are intervals of consecutive outgoing links.
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Consecutivity (cont’d)

To exploit consecutivity, we use a special representation for the
extra node list called intervalization, that is:

I sufficiently long (say ≥ T ) intervals of consecutive integers are
represented by their left extreme and their length minus T ;

I other extra nodes, if any, are called residual nodes and are
represented alone.
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Intervalization example

Node Outd. Ref. # blocks Copy blocks Extra nodes
. . . . . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
. . . . . . . . . . . . . . . . . .
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Intervalization example

Node Outd. Ref. # blocks Copy blocks Extra nodes
. . . . . . . . . . . . . . . . . .
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
. . . . . . . . . . . . . . . . . .

Node Outd. Ref. # bl. Copy bl.s # int. Lft extr. Lth Residuals
. . . . . . . . . . . . . . . . . . . . . . . . . . .
15 11 0 2 15,. . . 4,. . . 13, 23 . . .
16 10 1 7 0, 0, . . . 1 316 1 22, 3041
17 0
18 5 3 1 4 0 50
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go?

Paolo Boldi, DSI, Università degli studi di Milano Compression techniques



Compressed codings
Web Graph Compression

Implementative issues
From web graphs to social networks

Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

I a large W guarantees better compression, but increases
compression time and space

I after W = 7 there is no significant improvement in
compression.
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Reference window

When the reference node is chosen, how far back in the “past” are
we allowed to go? We need to keep track of a window of the last
W successor lists. The choice of W is critical:

I a large W guarantees better compression, but increases
compression time and space

I after W = 7 there is no significant improvement in
compression.

The choice of W does not impact on decompression time.
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Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.
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Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.
During compression, it is possible to limit their length keeping into
account of how long is the reference chain for every node in the
window and avoiding to use nodes whose reference chain is already
of a given maximum length R.
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Reference chain length

Referencing involves recursion: to decode the successor list of x ,
we need first to decompress the successor list of x − r , etc. This
chain is called the reference chain of x : decompression speed
depends on the length of such chains.
During compression, it is possible to limit their length keeping into
account of how long is the reference chain for every node in the
window and avoiding to use nodes whose reference chain is already
of a given maximum length R.
The choice of R influences the compression ratio (with R =∞
giving the best possible compression) but also on decompression
speed (R =∞ may produce access time that can be two orders of
magnitude larger than R = 1 — it may even produce stack
overflows).
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From web graphs to social networks

The basic property we have been exploiting so far is that nodes are
numbered according to the lexicographic ordering of URLs. Is it
possible to adapt / extend this idea to non-web graphs, e.g., to
social networks?

I What we want is an ordering of the nodes that is compression
friendly

I In particular, we want that most arcs are between nodes that
are very close (as numbers) to each other.
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Orderings and communities

Social networks have no natural ordering such as “lexicographic by
URL”. However many statistics suggest that social networks are
clustered.

Goal: unravel the clustered structure inside social networks, search
for an ordering that run through clusters and use it to compress
the graph much better than the theoretical lower bound.
Constraints:

1. very few clustering techniques scale up to very large graphs

2. we do not posses any prior information on the number of
clusters

3. cluster sizes are going to be very unbalanced
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Orderings and communities (cont’d)

I You can obtain an ordering from a clustering just sorting by
cluster label

I Different clustering algorithms yield different and
incomparable orderings

I Main idea:
I Run a clustering algorithm A
I Renumber nodes sorting by A’s labels, breaking ties using the

node numbers (i.e., sort stably by A’s labels)
I Iterate with another clustering algorithm
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Label Propagation Algorithm (LPA)

LPA are a class of clustering algorithm that work as follows:

I Every node adopts the label that is most common among its
neighbors. . .

I . . . with an adjustment depending on the overall popularity of
the label
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Label Propagation Algoritm (LPA)

Require: G a graph, γ a density parameter
1: π ← a random permutation of G ’s nodes
2: for all x : λ(x)← x , v(x)← 1
3: while (some stopping criterion) do
4: for i = 0, 1, . . . , n − 1 do
5: for every label `, k` ← |λ−1(`) ∩ NG (π(i))|
6: ˆ̀← argmax`[k` − γ(v(`)− k`)]
7: decrement v(λ(π(i)))
8: λ(π(i))← ˆ̀

9: increment v(λ(π(i)))
10: end for
11: end while

Here v(`) is the number of nodes currently labelled by `, so
v(`)− k` is the popularity of label ` outside of the current
neighborhood.
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Layered Label Propagation Algoritm (LLPA)

I Repeatedly run LPA with different values of γ

I Renumber nodes sorting by stably by the new labels

Name LLP BFS Shingle Natural Random
Amazon 9.16 (-30%) 12.96 14.43 (+11%) 16.92 (+30%) 23.62 (+82%)
DBLP 6.88 (-23%) 8.91 11.42 (+28%) 11.36 (+27%) 22.07 (+147%)
Enron 6.51 (-24%) 8.54 9.87 (+15%) 13.43 (+57%) 14.02 (+64%)
Hollywood 5.14 (-35%) 7.81 6.72 (-14%) 15.20 (+94%) 16.23 (+107%)
LiveJournal 10.90 (-28%) 15.1 15.77 (+4%) 14.35 (-5%) 23.50 (+55%)
Flickr 8.89 (-22%) 11.26 10.22 (-10%) 13.87 (+23%) 14.49 (+28%)
indochina (hosts) 5.53 (-17%) 6.63 7.16 (+7%) 9.26 (+39%) 10.59 (+59%)
uk (hosts) 6.26 (-18%) 7.62 8.12 (+6%) 10.81 (+41%) 15.58 (+104%)
eu 3.90 (-21%) 4.93 6.86 (+39%) 5.24 (+6%) 19.89 (+303%)
in 2.46 (-30%) 3.51 4.79 (+36%) 2.99 (-15%) 21.15 (+502%)
indochina 1.71 (-26%) 2.31 3.59 (+55%) 2.19 (-6%) 21.46 (+829%)
it 2.10 (-28%) 2.89 4.39 (+51%) 2.83 (-3%) 26.40 (+813%)
uk 1.91 (-33%) 2.84 4.09 (+44%) 2.75 (-4%) 27.55 (+870%)
altavista-nd 5.22 (-11%) 5.85 8.12 (+38%) 8.37 (+43%) 34.76 (+494%)
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