
Structure of a crawler
Distributed crawlers

Web Crawling

Paolo Boldi
DSI

LAW (Laboratory for Web Algorithmics)
Università degli Studi di Milan

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Looking for information?

Looking for information is becoming more and more difficult, for
various reasons:

I dimension (too much information! . . .)

I lack of semantic information (attempts to move to the
Semantic Web) and structure

I information quality is extremely heterogeneous

I documents rapidly become unavailable, obsolete, modified. . .

. . . about 80% of users make use of a search engine to try to look
for information

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a search engine

A search engine is conceptually made of three components:

I a web crawler (or web spider)

I an indexing engine

I a front end

Usually, the end user only knows the latter component, that is, the
part of a search engine that actually answers users’ queries.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a search engine

A search engine is conceptually made of three components:

I a web crawler (or web spider)

I an indexing engine

I a front end

Usually, the end user only knows the latter component, that is, the
part of a search engine that actually answers users’ queries.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a search engine

A search engine is conceptually made of three components:

I a web crawler (or web spider)

I an indexing engine

I a front end

Usually, the end user only knows the latter component, that is, the
part of a search engine that actually answers users’ queries.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a search engine

A search engine is conceptually made of three components:

I a web crawler (or web spider)

I an indexing engine

I a front end

Usually, the end user only knows the latter component, that is, the
part of a search engine that actually answers users’ queries.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Web Crawler

This component aims at visiting the web (or a certain portion of
it) and at gathering locally (information about) pages that are
found, saving this information in some structure (called a store)
that allows the other phases to be performed.

This is the component that we are going to describe in the rest of
this talk. Writing a web crawler is apparently an easy task (from
an algorithmic viewpoint), but some issues should be considered
carefully (and make the problem less trivial):

I Bandwidth

I Refresh policies

I Presence of hidden material (the “dark Web”)

I Failure to respect standards (HTTP, HTML, etc.)

I Spider traps!

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Indexing engine

This is a set of tools that analyze the store (where the visited
pages have been stored) and produces a set of addictional
structures (generically called indices) that allow one to access
rapidly the store, and to answer efficiently to users’ queries.

Among the purposes of this phase:

I Extract textual information from the pages (parsing)

I Detecting the presence of duplicates (or quasi-duplicates), due
to mirroring or other phenomena

I Detecting the presence of spamming

I Produce suitable (inverted) indices, and compute information
needed in the last phase for selection and ranking purposes

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end

Answers the users’ queries. Given a query, it has to select the set of
pages that match the query and it has to rank them (i.e., to decide
in which order the selected pages should be presented).

Both tasks
are carried out using the indices produced in the previous phase.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end

Answers the users’ queries. Given a query, it has to select the set of
pages that match the query and it has to rank them (i.e., to decide
in which order the selected pages should be presented). Both tasks
are carried out using the indices produced in the previous phase.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Front end (cont’d)

Typically, a search engine also provides additional features, like:

I Sophisticated searches (boolean operators, proximity
operators, site- or language-restricted searches etc.)

I Usage of ontologic suggestions (“windows” is an operating
system or an opening in a wall?)

I Linguistic recognition, stemming and hyper/hyponym
substitution (“flat” expands to “flat OR flats OR apartments
OR houses” etc.)

I User profiling (through query/bookmark logging etc.)

I Automatic clustering and classification

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a crawler (I)

A crawler (aka spider) must harvest pages, essentially by
performing a visit of the Web graph.

The crawl is performed starting from one (or more) page(s), called
crawl seed.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a crawler (I)

A crawler (aka spider) must harvest pages, essentially by
performing a visit of the Web graph.

The crawl is performed starting from one (or more) page(s), called
crawl seed.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a crawler (II)

A visit:

visit(): Perform a visit cycle
while F 6= ∅ do
x ← F .pick()
visit(x) i.e.: fetch the page with URL x!
St[x]← black
for y ∈ N+(x) do

if S [y] = white then
St[y]← grey
F .add(y)

end if
end for

end while

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a crawler (II)

A visit:

visit(): Perform a visit cycle
while F 6= ∅ do
x ← F .pick()
visit(x) i.e.: fetch the page with URL x!
St[x]← black
for y ∈ N+(x) do
if S [y] = white then
St[y]← grey
F .add(y)

end if
end for

end while

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Choosing the seed

I Determines the set of pages that will be visited (coverage)

I If you start from any page in the giant component, you will
(theoretically) end up visiting the whole web, except
essentially from the source components

I There is a (ever growing) portion of the web that is not
reachable simply through links: this is the so called “dark
matter” (automatic form-filling? fake user registration?)

I Many think that the “visible” part is by now only a minor
portion (16-20%) of the entire web.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Choosing the seed

I Determines the set of pages that will be visited (coverage)

I If you start from any page in the giant component, you will
(theoretically) end up visiting the whole web, except
essentially from the source components

I There is a (ever growing) portion of the web that is not
reachable simply through links: this is the so called “dark
matter” (automatic form-filling? fake user registration?)

I Many think that the “visible” part is by now only a minor
portion (16-20%) of the entire web.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Choosing the seed

I Determines the set of pages that will be visited (coverage)

I If you start from any page in the giant component, you will
(theoretically) end up visiting the whole web, except
essentially from the source components

I There is a (ever growing) portion of the web that is not
reachable simply through links: this is the so called “dark
matter” (automatic form-filling? fake user registration?)

I Many think that the “visible” part is by now only a minor
portion (16-20%) of the entire web.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Choosing the seed

I Determines the set of pages that will be visited (coverage)

I If you start from any page in the giant component, you will
(theoretically) end up visiting the whole web, except
essentially from the source components

I There is a (ever growing) portion of the web that is not
reachable simply through links: this is the so called “dark
matter” (automatic form-filling? fake user registration?)

I Many think that the “visible” part is by now only a minor
portion (16-20%) of the entire web.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Choosing the seed

I Determines the set of pages that will be visited (coverage)

I If you start from any page in the giant component, you will
(theoretically) end up visiting the whole web, except
essentially from the source components

I There is a (ever growing) portion of the web that is not
reachable simply through links: this is the so called “dark
matter” (automatic form-filling? fake user registration?)

I Many think that the “visible” part is by now only a minor
portion (16-20%) of the entire web.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which pages should be fetched?

I Choosing the pages on the basis of their (supposed) content
(header content-type)

I Only text/html? Or also other formats? (P.es.,
application/ms-word, application/postscript, . . .)

I You need tools to parse other hypertextual formats (like PDF)
different from HTML (to extract links, words etc.)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which pages should be fetched?

I Choosing the pages on the basis of their (supposed) content
(header content-type)

I Only text/html? Or also other formats? (P.es.,
application/ms-word, application/postscript, . . .)

I You need tools to parse other hypertextual formats (like PDF)
different from HTML (to extract links, words etc.)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which pages should be fetched?

I Choosing the pages on the basis of their (supposed) content
(header content-type)

I Only text/html? Or also other formats? (P.es.,
application/ms-word, application/postscript, . . .)

I You need tools to parse other hypertextual formats (like PDF)
different from HTML (to extract links, words etc.)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which pages should be fetched?

I Choosing the pages on the basis of their (supposed) content
(header content-type)

I Only text/html? Or also other formats? (P.es.,
application/ms-word, application/postscript, . . .)

I You need tools to parse other hypertextual formats (like PDF)
different from HTML (to extract links, words etc.)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

What information should you save for every
page?

I Whole content (maybe: including HTTP headers)? Text only
(no tags)? Only the sequence of word occurrences (no tags,
no punctuation)?

I Influences the amount of disk space

I It is always necessary to keep the store in compressed form

I Note: a compressed page, with headers, may occupy on the
average about 4KB (the whole web would occupy about 16
TeraBytes)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

What information should you save for every
page?

I Whole content (maybe: including HTTP headers)? Text only
(no tags)? Only the sequence of word occurrences (no tags,
no punctuation)?

I Influences the amount of disk space

I It is always necessary to keep the store in compressed form

I Note: a compressed page, with headers, may occupy on the
average about 4KB (the whole web would occupy about 16
TeraBytes)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

What information should you save for every
page?

I Whole content (maybe: including HTTP headers)? Text only
(no tags)? Only the sequence of word occurrences (no tags,
no punctuation)?

I Influences the amount of disk space

I It is always necessary to keep the store in compressed form

I Note: a compressed page, with headers, may occupy on the
average about 4KB (the whole web would occupy about 16
TeraBytes)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

What information should you save for every
page?

I Whole content (maybe: including HTTP headers)? Text only
(no tags)? Only the sequence of word occurrences (no tags,
no punctuation)?

I Influences the amount of disk space

I It is always necessary to keep the store in compressed form

I Note: a compressed page, with headers, may occupy on the
average about 4KB (the whole web would occupy about 16
TeraBytes)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

What information should you save for every
page?

I Whole content (maybe: including HTTP headers)? Text only
(no tags)? Only the sequence of word occurrences (no tags,
no punctuation)?

I Influences the amount of disk space

I It is always necessary to keep the store in compressed form

I Note: a compressed page, with headers, may occupy on the
average about 4KB (the whole web would occupy about 16
TeraBytes)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which links should you follow?

I Sometimes you don’t want to visit the whole web, but just a
part of it (e.g., the Italian web)

I You must decide some criterion (what is the Italian web, after
all? .it? any page that appears to be written in Italian? and
how can you decide this? and even then, how can you reach
all such pages?)

I The criteria that can be implemented more easily decide
which links should be followed on the basis of some (purely
synctactic) condition

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which links should you follow?

I Sometimes you don’t want to visit the whole web, but just a
part of it (e.g., the Italian web)

I You must decide some criterion (what is the Italian web, after
all? .it? any page that appears to be written in Italian? and
how can you decide this? and even then, how can you reach
all such pages?)

I The criteria that can be implemented more easily decide
which links should be followed on the basis of some (purely
synctactic) condition

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which links should you follow?

I Sometimes you don’t want to visit the whole web, but just a
part of it (e.g., the Italian web)

I You must decide some criterion (what is the Italian web, after
all? .it? any page that appears to be written in Italian? and
how can you decide this? and even then, how can you reach
all such pages?)

I The criteria that can be implemented more easily decide
which links should be followed on the basis of some (purely
synctactic) condition

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Which links should you follow?

I Sometimes you don’t want to visit the whole web, but just a
part of it (e.g., the Italian web)

I You must decide some criterion (what is the Italian web, after
all? .it? any page that appears to be written in Italian? and
how can you decide this? and even then, how can you reach
all such pages?)

I The criteria that can be implemented more easily decide
which links should be followed on the basis of some (purely
synctactic) condition

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Politeness

I You should avoid “bombing” a host with too many
consecutive (let alone: parallel) requests

I Respect black listing and the robots.txt (as well as any other
robot-exclusion) protocol

I While crawling, provide information (user-agent) that allow
WebMasters to know who they should blame

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Politeness

I You should avoid “bombing” a host with too many
consecutive (let alone: parallel) requests

I Respect black listing and the robots.txt (as well as any other
robot-exclusion) protocol

I While crawling, provide information (user-agent) that allow
WebMasters to know who they should blame

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Politeness

I You should avoid “bombing” a host with too many
consecutive (let alone: parallel) requests

I Respect black listing and the robots.txt (as well as any other
robot-exclusion) protocol

I While crawling, provide information (user-agent) that allow
WebMasters to know who they should blame

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Politeness

I You should avoid “bombing” a host with too many
consecutive (let alone: parallel) requests

I Respect black listing and the robots.txt (as well as any other
robot-exclusion) protocol

I While crawling, provide information (user-agent) that allow
WebMasters to know who they should blame

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Visit strategies

I How do you select the next page to be visited from F (in the
visit algorithm)?

I Depth-first? breadth-first?

I From this choice depends how fast you reach “important”
(high-quality) pages

I Under many quality metrics, for general-purpose
(non-focused) crawls, breadth-first visits seem to be the most
efficient (but. . .)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Visit strategies

I How do you select the next page to be visited from F (in the
visit algorithm)?

I Depth-first? breadth-first?

I From this choice depends how fast you reach “important”
(high-quality) pages

I Under many quality metrics, for general-purpose
(non-focused) crawls, breadth-first visits seem to be the most
efficient (but. . .)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Visit strategies

I How do you select the next page to be visited from F (in the
visit algorithm)?

I Depth-first? breadth-first?

I From this choice depends how fast you reach “important”
(high-quality) pages

I Under many quality metrics, for general-purpose
(non-focused) crawls, breadth-first visits seem to be the most
efficient (but. . .)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Visit strategies

I How do you select the next page to be visited from F (in the
visit algorithm)?

I Depth-first? breadth-first?

I From this choice depends how fast you reach “important”
(high-quality) pages

I Under many quality metrics, for general-purpose
(non-focused) crawls, breadth-first visits seem to be the most
efficient (but. . .)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Visit strategies

I How do you select the next page to be visited from F (in the
visit algorithm)?

I Depth-first? breadth-first?

I From this choice depends how fast you reach “important”
(high-quality) pages

I Under many quality metrics, for general-purpose
(non-focused) crawls, breadth-first visits seem to be the most
efficient (but. . .)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

How should one react to anomalies?

I A crawler should be robust enough to tolerate anomalies
(servers that don’t respect the HTTP protocol; pages whose
HTML syntax is not correct; etc.)

I Often, this need requires the usage of heuristics (e.g., if a
server says it is going to serve a text/html page, should we
trust it? how can we check if this is true?)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

How should one react to anomalies?

I A crawler should be robust enough to tolerate anomalies
(servers that don’t respect the HTTP protocol; pages whose
HTML syntax is not correct; etc.)

I Often, this need requires the usage of heuristics (e.g., if a
server says it is going to serve a text/html page, should we
trust it? how can we check if this is true?)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

How should one react to anomalies?

I A crawler should be robust enough to tolerate anomalies
(servers that don’t respect the HTTP protocol; pages whose
HTML syntax is not correct; etc.)

I Often, this need requires the usage of heuristics (e.g., if a
server says it is going to serve a text/html page, should we
trust it? how can we check if this is true?)

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Snapshot vs. refresh

I The crawler structure we described is suitable only if you want
to take a snapshot of the Web

I But the Web keeps changing!

I A crawler should continuously refresh its pages, visiting the
same page over and over again

I One should respect the politeness policies while guaranteeing
the maximal possible freshness

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Snapshot vs. refresh

I The crawler structure we described is suitable only if you want
to take a snapshot of the Web

I But the Web keeps changing!

I A crawler should continuously refresh its pages, visiting the
same page over and over again

I One should respect the politeness policies while guaranteeing
the maximal possible freshness

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Snapshot vs. refresh

I The crawler structure we described is suitable only if you want
to take a snapshot of the Web

I But the Web keeps changing!

I A crawler should continuously refresh its pages, visiting the
same page over and over again

I One should respect the politeness policies while guaranteeing
the maximal possible freshness

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Snapshot vs. refresh

I The crawler structure we described is suitable only if you want
to take a snapshot of the Web

I But the Web keeps changing!

I A crawler should continuously refresh its pages, visiting the
same page over and over again

I One should respect the politeness policies while guaranteeing
the maximal possible freshness

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Problems

Snapshot vs. refresh

I The crawler structure we described is suitable only if you want
to take a snapshot of the Web

I But the Web keeps changing!

I A crawler should continuously refresh its pages, visiting the
same page over and over again

I One should respect the politeness policies while guaranteeing
the maximal possible freshness

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer. In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer.

In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer. In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer. In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer. In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Distributed crawlers: why

A centralized crawler is extremely inefficient: most of the time, it
is waiting for I/O.

The obvious solution to this issue is to switch to a multi-process or
distributed crawer. In many cases, practical crawlers are both:

I it is distributed, made by many agents, each performing a part
of the crawl, i.e., visiting a portion of the URLs to be visited;

I it is multi-process: within each agent, you have many
processes performing parallel visits, or providing other
functionalities (e.g., DNS, storage handling etc.).

A distributed crawler features all the problems seen above, and
some more. . .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a distributed crawler

I Every agent performs all the task of a usual crawer: it fetches
a page, stores it somewhere, analyze its content looking for
hyperlinks etc.

I The agents run on some machines, that communicate with
one another over a LAN (intra-site parallel crawlers) or on a
geographical-sized network (distributed crawler in a proper
sense).

I You might have a central coordinator, that keeps track of the
way the crawl is going on, or the agents may be losely coupled
(in such case we speak of a fully distributed crawler).

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a distributed crawler

I Every agent performs all the task of a usual crawer: it fetches
a page, stores it somewhere, analyze its content looking for
hyperlinks etc.

I The agents run on some machines, that communicate with
one another over a LAN (intra-site parallel crawlers) or on a
geographical-sized network (distributed crawler in a proper
sense).

I You might have a central coordinator, that keeps track of the
way the crawl is going on, or the agents may be losely coupled
(in such case we speak of a fully distributed crawler).

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a distributed crawler

I Every agent performs all the task of a usual crawer: it fetches
a page, stores it somewhere, analyze its content looking for
hyperlinks etc.

I The agents run on some machines, that communicate with
one another over a LAN (intra-site parallel crawlers) or on a
geographical-sized network (distributed crawler in a proper
sense).

I You might have a central coordinator, that keeps track of the
way the crawl is going on, or the agents may be losely coupled
(in such case we speak of a fully distributed crawler).

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Structure of a distributed crawler

I Every agent performs all the task of a usual crawer: it fetches
a page, stores it somewhere, analyze its content looking for
hyperlinks etc.

I The agents run on some machines, that communicate with
one another over a LAN (intra-site parallel crawlers) or on a
geographical-sized network (distributed crawler in a proper
sense).

I You might have a central coordinator, that keeps track of the
way the crawl is going on, or the agents may be losely coupled
(in such case we speak of a fully distributed crawler).

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s:

No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck,

no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure,

no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s:

Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap).

Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Anarchic fully distributed crawlers

I No central coordinator.

I Every agent starts from a certain seed and proceeds in a
completely independent way, without any coordination with
the other agents.

I Pro’s: No bottleneck, no single point of failure, no
inter-agent communication.

I Con’s: Typically, many agents will end up crawling portions
of Web that partially overlap (overlap). Moreover, it is
impossible to put in place reasonable politeness policies.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s:

No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap;

if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s:

If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost;

it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch;

it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload);

a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with static assignment

I No central coordinator.

I The set U of URLs to be visited is partitioned a-priori in n
subsets (one for each agent) U1, . . . ,Un.

I Every time a URL u ∈ Ui is found, it is communicated to
agent i that is responsible for it.

I Pro’s: No overlap; if the partitioning respects the host part, it
is possible to be polite.

I Con’s: If an agent stops working, the entire portion of the
Web it was assigned gets lost; it is impossible to change the
set of working agents while the crawler is running: you have
to start from scratch; it is impossible to set-up a reasonable
load-balancing between agents (you can just hope that
balancing the cardinalities implies balancing workload); a lot
of communication.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s:

No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap;

(potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing;

the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s:

It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange;

the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Crawlers with central coordinator

I The central coordinator keeps track of which URLs have
already been visited, and at every new URL it decides the
agent that will fetch the page, usually on the basis of the
current agents’ workload.

I Every agent, after fetching a page, must communicate the
outlinks to the central coordinator.

I Pro’s: No overlap; (potentially) optimal load-balancing; the
number of agent may change during the crawl.

I Con’s: It requires an enormous amount of information
exchange; the central coordinator is both a communication
bottleneck and a single point of failure.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;
I if a new agent is added, it will take some of the responsibilities

of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;
I if a new agent is added, it will take some of the responsibilities

of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;
I if a new agent is added, it will take some of the responsibilities

of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;
I if a new agent is added, it will take some of the responsibilities

of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;

I if a new agent is added, it will take some of the responsibilities
of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Fully distributed crawlers with dynamic assignment

I Agents’ responsibilities are determined on the bases of a
responsibility function.

I This function determines, for every URL, the agent
responsible for it, in such a way that:

I every agent can autonomously (=w/o communication)
establish who is responsible for a given URL;

I all agents agree on their decisions;
I if a new agent is added, it will take some of the responsibilities

of the existing agents, but this will happen without causing
conflicts in the responsibilities of the agents themselves.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

Let A be the set of potential agents, and U be the set of URLs. In
every moment, there will be a set X ⊆ A of alive agents; given this
set, you must decide, for each URL, who (among the alive agent)
is responsible for that URL.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance); in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance); in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance); in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance); in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance);

in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

More precisely. . .

The exact requirements follow:

I There is a responsibility function r : 2A × U → A

I For every ∅ 6= X ⊆ A and u ∈ U you must have r(X , u) ∈ X
(correctness)

I If x ∈ X , the set {u ∈ U | r(X , u) = x} must have cardinality
≈ |U|/|X | (equity)

I Suppose y 6∈ X : if r(X ∪ {y}, u) = x ∈ X then r(X , u) = x
(covariance); in other words: adding a new agent y cannot
change the responsibilities of existing agents, except for the
fact that some responsibilities will of course be given to y .

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

You can implement this. . .

. . . by using a consistent hashing function. Typically:

I you map every agent a ∈ A to a random set (seeded on the
agent’s identity) of K points on the unit circle (called replicas)

I you similarly map every URL u ∈ U to a random point
(seeded on the URL, or the URL’s host part)

I r(X , u) is found by determining the replica of an alive agent
that is closest to the point assigned to u.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

You can implement this. . .

. . . by using a consistent hashing function. Typically:

I you map every agent a ∈ A to a random set (seeded on the
agent’s identity) of K points on the unit circle (called replicas)

I you similarly map every URL u ∈ U to a random point
(seeded on the URL, or the URL’s host part)

I r(X , u) is found by determining the replica of an alive agent
that is closest to the point assigned to u.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

You can implement this. . .

. . . by using a consistent hashing function. Typically:

I you map every agent a ∈ A to a random set (seeded on the
agent’s identity) of K points on the unit circle (called replicas)

I you similarly map every URL u ∈ U to a random point
(seeded on the URL, or the URL’s host part)

I r(X , u) is found by determining the replica of an alive agent
that is closest to the point assigned to u.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

You can implement this. . .

. . . by using a consistent hashing function. Typically:

I you map every agent a ∈ A to a random set (seeded on the
agent’s identity) of K points on the unit circle (called replicas)

I you similarly map every URL u ∈ U to a random point
(seeded on the URL, or the URL’s host part)

I r(X , u) is found by determining the replica of an alive agent
that is closest to the point assigned to u.

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Consistent hashing

Agent A
Agent B
Agent C

URL http://foo.bar.com/aaa/bbb.html

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Consistent hashing

Agent A
Agent B
Agent C

URL http://foo.bar.com/aaa/bbb.html

It is assigned to agent B

Paolo Boldi Web Crawling

Structure of a crawler
Distributed crawlers

Consistent hashing

Agent A
Agent B
Agent C

URL http://foo.bar.com/aaa/bbb.html

Now URL gets assigned to A

Paolo Boldi Web Crawling

	Structure of a crawler
	Distributed crawlers

