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Chapter 1

Preface

1.1 Structure of the thesis

For convenience of the reader, we start with a general overview of the content of this
thesis.

In Chapter 2, we motivate the notion of tolerance space by using some examples coming
from the theory of computation, measurement, aynchronous circuit design and from the
relativistic theory of time (with applications to concurrency theory).

After introducing some definitions and theorems from domain theory (Chapter 3), we
discuss at a certain depth the role of tolerance spaces (and their generalizations) for ob-
taining results in the theory of domains, with applications to the construction of universal
domains and to the solution of recursive domain equations (Chapter 4). In this context,
we present some generalizations of Rado’s theorem about the existence of a universal
tolerance space (Section 4.3), and give, in Section 4.4, some hints about how these con-
structions lead directly to the possibility of solving recursive domain equations by using
suitable number-theoretical encodings. We also consider two alternative universal con-
structions, one based on trace automata and prime event structures (Section 4.5), and one
of probabilistic flavour (Section 4.6).

In Chapter 5, we see how one could endow a tolerance space with a further topological
structure, and use this fact to obtain finitary approximations of complex topological spaces.

Finally, Chapter 6 takes into thorough consideration those tolerance spaces which
could be adopted for representing results of measurements, concentrating on those asso-
ciated with strongly noetherian semiorders, and obtaining some simple characterizations
of tolerance properties in terms of the structure of maximal chains and antichains in the
associated semiorder.

In the Appendix, we recall the basic notions of category theory, measurement theory
and general topology which the reader should possess in order to understand the contents
of this thesis.

Most results presented in Chapter 3 are standard, except some which were published in
[BCS93]. The material of Chapter 4 is mostly new, except for Session 4.5, which appeared
in [BCS93]. Some of the results presented in Chapter 5 were part of [Bol95]. Most of the
content of Chapter 6 already appeared in [Bol96].

Here follows the precedence diagram of the thesis.
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6 Preface

1.2 Notations, conventions and terminology

In the sequel, we shall freely use some very standard notations and conventions. Here is
a table of some less common notations; some more are introduced in the Appendix.

Notation Meaning

ACqn B A is a finite subset of B

ACB A is a proper subset of B

AC¢ the complement of A

A\ B A minus B (set-theoretic difference)

[Licr Ai the cartesian product of the family A;

p(A) the powerset of A (i.e., the set of all subsets of A)
©fin(A) the set of all finite subsets of A

fog the function compositionof g: A - B and f: B = C

z Ry the pair (z,y) belongs to the relation R (i.e., (z,y) € R)
RoT the composition of two relations RC Ax Band TC B xC

¢ <= Y, P iff ¢ ¢ if and only if 1)

¢ N (P V1, —¢) ¢andy (¢ or ¢, not ¢)

N,Z,QR the sets of natural, integer, rational, real numbers, resp.
w the set of natural numbers; the first infinite ordinal

In order not to puzzle the reader, a short warning about the terminology used in this
thesis is needed. In the following, we shall mainly be concerned with tolerance spaces, and
with their applications to domain theory, approximation theory and measurement. As a
matter of fact, from a definitional point of view, a tolerance space is nothing more than
a reflexive (possibly infinite) graph, and we could have chosen to use the standard graph-
theoretical terminology to speak about its properties. Nevertheless, we feel that the idea of
tolerance space has a peculiar significance of its own which should be always emphasized,
if only because of the way in which the adjacency (tolerance) relation is generated.

For this reason, we have decided to adopt a completely tolerance-theoretic nomen-
clature, and to adhere to this general principle throughout the whole thesis, with few
exceptions. Much for the same reasons, we have decided to use a domain-theoretical ter-
minology which fits our needs, thus discarding some of the possible (sometimes, widely
diffused) alternatives.
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We give here a brief list of the alternative names the reader may find in the literature,
which will be anyway mentioned in the text whenever introducing a new concept.

Name adopted here Possible alternatives

tolerance space [Zee62] (undirected reflexive) graph
tolerance-continuous function graph morphism
(tolerance space) embedding  graph embedding

indifference chain path in a graph

atomic coherent dI-domain coherence space [Gir87]
atomic dI-domain qualitative domain [Gir86]
line (cut) [Pet96] maximal (anti)chain
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Chapter 2

Introduction: tolerance and
approximation

Concurrency is a basic computational phenomenon occurring in spatially distributed sys-
tems in which communication between components takes a non-negligible time.! Its study
has gained much impetus from the insight that the processes of such systems can be ana-
lyzed as sets of events (or, better, event occurrences) with an order relation on them
reflecting the order in which such events may become enabled in a run of the system.?
Two events are concurrent exactly when they are incomparable in this ordering, meaning
in particular that none of them is enabled by the other (early instances of this view can
be found in Holt et al. [HT68] and Patil [Pat70]).

The source of this basic insight can in fact be traced back to the work of Carl Adam
Petri [Pet62, Pet82a, Pet77] who later (see for example [Pet79, Pet80a, Pet82b, Pet87,
PS87]) developed an axiomatic theory of concurrency inspired by earlier axiomatizations of
relativistic physics (as summarized, for example, in Carnap [Car58]). The basic framework
for studying the concurrency relation is a structure

(X, co) (2.1)

for an arbitrary set X # () with a reflexive, symmetric binary relation co over X. This
is what in the present work will be called a tolerance space, co being a tolerance relation,
following the terminology introduced by Zeeman [Zee62].

Of course this axiomatic development favors the comparison of properties of concur-
rency with those of formally similar structures arising in apparently unrelated areas. We
shall now comment briefly on some of these connections and pointers to the relevant lit-
erature, leaving to later sections a closer study of some of them.

Petri himself (in Petri [Pet80a]) explicitly observed the close link between axioms for
structures of the form (2.1) and properties of the relation of indifference which arises
in ordinal measurement of utility. This can be extended to an interpretation in which

'This is the definition of a distributed system given, for example, in Lamport [Lam78]. Observe that
any system is distributed in this sense, when looked at sufficiently closely.

2This is usually called causal order in the literature, although it represents the same kind of relation
which exists between cocking the hammer of a gun and pulling the trigger, which can hardly be counted
as one of cause and effect.
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X is a set of samples to be measured by some device M. Then zcoy if z and y are
indistinguishable by means of M. It was Luce [Luch6], on the basis of previous works
in economics [Arm39] and philosophy [Goo77], who supported the claim that indifference
should be regarded as a tolerance relation, formalized as incomparability in partial orders
of a well-behaved class. These are the semiorders which, by results of Scott and Suppes
[SS58], can be represented as the orderings arising when the measuring device outputs for
each sample a real value within a degree of precision limited by a threshold depending on
the device only.3

Intransitive relations of similarity appear quite naturally in the analysis of what Poin-
caré [Poi03] called empirical continua. Indeed, the existence of sensory thresholds (or of
physical limitations on measuring devices) suggests that density properties of orderings
arising from the classification of perceptual data be replaced by just such a relation.*
Poincaré even turned the main consequence of these limitations into a definition, which is
also taken to be a fundamental property of concurrency in Petri [Pet80al):

On a observé, par exemple, qu'un poids A de 10 grammes et un poids B de
11 grammes produisaient des sensations identiques, que le poids B ne pouvait
non plus étre discerné d’un poids C de 12 grammes, mais que 1'on distinguait
facilement le poids A du poids C. Les résultats bruts de ’expérience peuvent
donc s’exprimer per les relations suivantes:

A=B,B=C,A<C

qui peuvent étre regardées comme la formule du continu physique. [ ... ]
Un systéme d’éléments formera un continu, si 'on peut passer d’un quel-
conque d’entre eux a un autre également quelconque, par une série d’éléments
consécutifs tels que chacun d’eux ne puisse se discerner du précédent. Cette
série linéaire est & la ligne du matématicien ce qu’un élément isolé était au
point. (ibidem, pages 34-35 and 45; English translation pages 22 and 31)

This line of thought has been further pursued by Zeeman [Zee62, ZB70] motivated by
applications to biology and physics, and by Poston [Pos71], who reconstructs a substantial
amount of results from higher mathematics replacing topological notions by their finitistic
analogues in the context of tolerance spaces of the kind (2.1).

A different connection appears when X is taken to be the collection of convex sets
(intervals) of an ordered set; in this case co may be interpreted as overlapping of intervals,
and further axioms may be imposed depending on the order-theoretical and topological
properties of the underlying ordered set. This interpretation originated with Whitehead’s
method of “extensive abstraction” (see Wiener [Wiel4, Wiel6] for early applications),
and is especially relevant to what has come to be known as “pointless topology,” in which
the points of a topological space are not primitive entities but rather are constructed
as suitable collections of open sets. On the one hand, this view conforms to the fact

3In Chapter 6 of the present work we take up the analysis of a special class of semiorders which is of
interest both in measurement and in the theory of concurrent systems.

41t should be observed that limitations in this case have a positive counterpart which appears when we
realize that the very existence of a practice of measurement in everyday life is closely dependent on the
fact that, for example, sameness of weight is a tolerance relation which is not an equivalence—otherwise
we should be able to communicate real numbers with infinite precision.
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that the infinite precision in measurement needed to exhibit a point can be obtained
only in the limit. In one such approach, for example, points are identified with maximal
sets of pairwise overlapping elements of X, as in the theory developed by Wallman and
summarized in Menger [Men40]. On the other hand, it has recently turned out that
the uniform application of this standpoint allows to prove constructively results which
classically need some form of the axiom of choice (for an example, see Coquand [Coq91,
Coq92]).

On the logical side, the elements of X can be considered as atomic propositions, co
describing a relation of compatibility or consistency between propositions. It is natural in
this context to take sets of pairwise compatible propositions as (partial) elements of some
kind of Scott domain.® The idea is due to Girard and is developed in Girard, Lafont and
Taylor [GLT89]. For example, the domain of “lazy natural numbers” which is of interest
for the denotational semantics of lazy functional programming languages and whose Hasse
diagram has the shape:

00

is easily seen to be described by the set of propositions:
X={n|newlU{n |necw}
with consistency given by the (symmetric closure of the) pairs:
- (m,n) for m = n,
- (mT,n) if m <n,
- (m*,n*) for all m,n.

It is thus possible also in this case to connect the idea of a tolerance space, in this last
interpretation, to the idea of partial element approximating a total one which underlies
much of Scott’s work in domain theory (see especially Scott [Sco70]). This is a different
way of relating domains and concurrency from that which motivated the introduction
of event structures and related classes of partial orders (Nielsen, Plotkin and Winskel
[NPWS81], Winskel [Win80]).

This interpretation will be explored thoroughly in Chapters 3 and 4 of the present work.
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2.1 Approximation and equivalence: a computational view-
point

The need for approximation is commonly determined by the impossibility (or the diffi-
culty) of achieving (deciding) equivalence between objects. For example, in the practice
of measurement, we say that a certain metal rod is approzimately 1 meter long meaning
either that we have no means for deciding whether its length is ezactly 1 meter (since the
measuring instruments at our disposal are not precise enough to make a non-approximated
judgement), or because in any case an exact measurement would be too expensive, or even
useless, in the given context.

Impossibility of achieving equivalence is sometimes determined by some limitations in
the availability of resources, but sometimes it is intrinsic in the problem we are considering.
In this section, we shall begin presenting some computational problems in which these
situations take place, and show how the difficulties arising may be well explained in the
context of observability.

We describe now a simple Gedankenezperiment which provides an example of a situ-
ation in which exact judgements about an equivalence relation require an unbounded
amount of effort (in this case, computational effort).

Consider a set A C w of natural numbers; clearly, this induces an equivalence relation
on w defined by

z~yifandonly if (z € A < y € A).

In other words, two numbers are equivalent iff they are both contained in A, or both
contained in its complement. This equivalence relation has exactly two equivalence classes,
A and A® (the complement of A). Naturally, there is a direct relation between decidability
of A and that of ~: more precisely, ~ is decidable if and only if A is recursive.

In fact, suppose that A is recursive, and let M be a deterministic Turing acceptor which
decides the membership problem for A; in other words, M is a machine which terminates
for every input in one of two possible states YES or NO, and M(z) = YES if and only
if z € A. Now, to decide whether z ~ y or not, simply run M on z and y, and answer
“YES” if and only if M gives the same answer on both inputs (i.e., M (z) = M(y)).

The problem here is that, in general, we do not know in advance how long it will take
for the machine M to give an answer: we only know that the machine will eventually
halt, but the number of steps is in general unbounded. Suppose that we need to take
some decision (possibly: an approximate one) within a fixed number ¢ of steps, using the
machine M. What should we do? We could run M, and hope that it halts on the given
input within t steps: if we are lucky enough, the machine will stop within the required
bound, and we have the answer we needed. But, what if the machine has not yet ended
its computation after the ¢-th step? The only thing we can do is to output some kind of
“don’t know” answer, expressing the fact that M has not been able to compute an answer
to the problem in that fixed amount of time.

In other words, we build a new machine M; which acts as follows:

My(z) = M(z) if M halts within ¢ steps on input z
BT HK otherwise.
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Figure 2.1: Partition induced by M,

The machine M; actually uses at most ¢ steps, but it sometimes gives a “don’t know”
answer (represented by HK, i.e., “Heaven Knows”); note that M; is not an acceptor.
Rather, it classifies the set of inputs w into three disjoint subsets YES;, NO; and HKj,
where YES; C A, NO; C A® and HK, is the set of all instances for which no solution
(acceptance or rejection) was found within ¢ steps; the situation is sketched in Fig. 2.1.

In a sense, M, is a degraded version of M, and it “recognizes” an approximated version
of the set A. It is natural to ask what kind of “equivalence” relation could be induced
by using M, instead of M. What we want to have is a kind of approximation of ~, but
how could we define it? Clearly, if M; gives an exact answer for both inputs (i.e., if it
outputs a YES or a NO), then we can decide ~ on those inputs in an exact way. But what
shall we do if we get a “don’t know” answer for one (or both) inputs? We may want to
decide in some random way (for example, by tossing a coin), but we prefer to do this in a
deterministic manner.

Of course, whatever protocol we choose, it shall be prone to error: the only thing we
can do is to decide if we want to have a surplus of “YES” or of “NO” answers. Our choice
will be to make a judgement which is never wrong when it answers “NO”, but may be
wrong when it answer “YES”®. In practice, we can define a relation ~; by putting

z ~y y if and only if My(z) = M(y) or M;(z) = HK or M;(y) = HK.

In other words, we answer “YES” whenever there is some chance that “YES” is the right
answer, while answering “NO” only if we are sure that “NO” is correct.

Now, what kind of relation is ~;7 It is certainly reflexive and symmetric, but it is not
transitive; in fact, suppose that z is accepted within ¢ steps, z is rejected within ¢ steps,
and y is neither accepted nor rejected during that period. As far as we know, z could be
equivalent to y, and likewise y could be equivalent to z, but z is certainly not equivalent
to z: i.e., z ~yy and y ~; z but z &4 2.

5This is in accordance with what happens in measuring: if we are to compare, for instance, two objects
by means of an arm balance, we can safely consider the objects to have different weights whenever this is
the response of the scale, but when the arms are in equilibrium, we are allowed to consider the objects
to be indistinguishable (as for weight) only inasfar we cannot use a more precise scale (thus putting more
“effort” in the decision).
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w

NH, YH,

HK

Figure 2.2: The topology €2; of observable properties

As a matter of fact, the graph of ~; is the dual of a complete bipartite graph with some
isolated node added: more precisely, we have the three cliques YES;, NO; and HK4, plus all
the arcs connecting elements of YES; to elements of HK;, and elements of HK; to elements
of NO;. Said otherwise, ~; is the complete relation minus (YES; x NO;) U (NO; x YES;).
Note that ~;D~yy1 and, moreover, Nyc, ~y=~, because YES; C YES;1;1 C A, NO; C
NO;; 1 € A® and HK; D HKyy1 (with N, HK; = 0).

Thus, ~¢ is not an equivalence relation, because it is not transitive, but it “approxim-
ates” an equivalence relation, in a sense which will be made precise in Chapter 5: relations
which are reflexive and symmetric, but not transitive, like ~;, are usually called “tolerance
relations” [Zee62]. What we want to discuss here is just that the problem of achieving
equivalence is related to the strong bound we have imposed on the resources (in this case:
time) we can use.

This problem can be clearly rephrased in terms of “observability”; what kind of prop-
erties can we observe at time t?7 If the word property is intended in its extensional sense
as a “set of objects” (a set of numbers, in this case), then the properties we can observe
are:

e the trivial properties () and w;

e the property of “possibly being in the set A”, which is represented by YH; = YES; U
HKt,

e the property of “possibly being out of the set A”, which is represented by NH; =
NO; U HK;.

This defines a topology of observable properties at t, say €2, and a base for the open sets
of ©; is given by {YH;, NH;}; the open sets of §; are represented in Fig. 2.2. (The idea
that observable properties form a topology is well-motivated and explained in [Smy92].)

Now, this clearly induces a topology on the limit, i.e., the topology € = Uy¢,, €2, whose
open sets are just those which are observable at some finite step. We can quotient the space
(w, ) by the relation ~, thus obtaining a topology €’ on the two-element set {4, A“}:
which topology do we obtain? Just observe that {A} is open if and only if {A} € Q; for
some t, i.e., if and only if M works in constant time, and in this case also {A®} € ©;. So,
the topology ' is either indescrete or discrete (i.e., the Sierpinski topology is ruled out).
Moreover, Q' is discrete if and only if M works in constant time.
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This idea of inducing a topology on the limit starting from topologies of finite observa-
tions, will be further pursued in Chapter 5, where we shall also prove that it can be used
to give finite approximations for uncountable topological spaces, like the Euclidean space.

In the above example, equivalence could actually be decided if we only imposed no
bounds on the response time. We shall now present a situation in which equivalence is
undecidable: there is no way to decide whether two objects are equal, not even using
unbouded resources. Once more, the problem here is closely related to the problem of
making finitely-decidable observations. The following example is borrowed from [Smy92],
with minor changes.

Consider a device which outputs an infinite binary sequence, one bit at a time: the
set of all possible outputs is thus {0,1}* (the set of all infinite sequences of bits). Each
such sequence x = (xg, z1, - ..) can be interpreted as the real number, denoted by z, whose
binary representation is .zgz1x2 . ... Thus, for example, the sequence (0,1,1,0,0,0,...) is
taken to represent the number 3/8.

An observer inspects the output sequence as it proceeds, noting various properties of it.
Since the device is a “black box”, his judgements can only be based on the finite segments
which have been output so far. A preliminary question is what kind of properties (i.e.,
subsets of {0,1}*) are observable?

Of course, a property is observable if and only if it can be observed within certain
(finite) time; in other words, the only basic observable properties are those of the form
w T where w is a finite binary string, and w 1 denotes the set of all infinite sequences
having w as prefix. For example, the property of “starting with a 0” is observable, while
the property of “containing finitely many 0’s” is not.

Notice that, if P and P’ are observable properties, then also P N P’ is such; moreover,
an arbitrary disjunction of observable properties is also observable’. Thus, the observable
properties form a topology Qgps on {0,1}¥, and {w 1: w € {0,1}*} is a base for this
topology.

Smyth [Smy92] discusses the topology Qgps in depth®; what we need, for our present
purpose, are just some very simple properties of this topology.

Suppose you possess two devices like that introduced above, each outputting some
(unknown) sequence; let x and y be the two sequences. We want to decide whether z =y
or not. Is this an observable property? Of course not. Even if, at a certain point, we
have observed the same finite prefix of both strings, we cannot say that the two (infinite)
sequences represent the same value (not even when they are actually “the same” sequence),
because we cannot stake claims on the future.

Yet, even though the problem z = ¥ is undecidable, we can still try to approximate its
solution, much in the same way as we did for ~ above. For example, we could say that
x = y if the two prefixes w = (z9,... ,z;) and v = (yo,... ,y:) observed at the t-th stage

"This is a simplification: the view that observable properties have the same closure properties as the
open sets of a topological space has been advocated by Abramsky in [Abr87]. For a criticism and sharpening
of this view, compare the discussion in [Smy92].

8 Actually, Qobs can be obtained in a straightforward way; just order {0,1}*° (the set of finite and
infinite strings on {0, 1}) by prefix, and induce the Scott topology on it. Then Qs is just the subspace of
maximal elements; it is actually homeomorphic to the Cantor space (Section 5.7; see also [Smy92]).
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are compatible, in the sense that there are at least two possible elements of w 1 and v 1
representing the same real.

Once more, the relation =; is not an equivalence relation: there are some pairs which
are certainly ruled out as non-equivalent, but there may be some other pairs which are
considered as “possibly equal” only because there is some possibility that they turn out
(in the future) to be equal (i.e., to represent the same real number). For example, the
two sequences (1,0,0,0,0) and (0,1,1,1,1) must be considered equal, because they can
be prefix of (1,0,0,0,0,...) and (0,1,1,1,1,...), both representing the number 1/2.

Also in this case, = D=;;1 and moreover = is the intersection (limit) of the =;’s. So,
our tolerance relations do approximate the (undecidable) equivalence =.

2.2 Two case studies

In the present section, we study more extensively two examples of situations in which
tolerance relations arise, and which inspired, in different ways, the first studies of the
abstract relation of concurrency.

Given the definition of a distributed system as one in which transmission delays are
not negligible, it is natural to consider the components of such systems as asynchronous
devices: in fact, for a large system, there is no guarantee that the clock period needed
for achieving synchrony of the components is wide enough for it to be perceived correctly
throughout the system. The first example is therefore a case study which relates the idea of
tolerance with some issues in asynchronous circuit design. Much of our discussion is based
on [Sei80], where a thorough analysis of self-timed asynchronous systems is presented (see
also [Kat94]).

On the other hand, we have already mentioned the fact that Petri’s original axiom
system for concurrency was inspired by the early attempts to axiomatize relativistic phys-
ics; the reason is that relativistic simultaneity is a tolerance relation which cannot be
an equivalence. Thus, we also discuss in some length some basic facts about relativistic
simultaneity in a model-theoretic setting.

2.2.1 Using tolerance as a design tool: the case of asynchronous circuits

Much of the design of a system is concerned with functional aspects which can be described
in a metric-free topological setting, with the help of logic diagrams, circuit diagrams or
such, which allow the designers to concentrate on the system behaviour at a level of
abstraction where implementation details are immaterial. Nevertheless, sooner or later,
it becomes necessary for the designer to think about the spatial geometry of the system,
which is governed by specific physical laws, determining also the behaviour of the circuit
in time.

This requires the use of some kind of discipline to establish a set of signalling conven-
tions on the system interconnections and element timing, in order to obtain the correct
sequencing of events happening at different locations of the system, and to prevent from
inconsistent behaviours.

There are basically two approaches one can use for defining such disciplines: syn-
chronous systems and self-timed (asynchronous) systems. In the former case, sequencing
and time are connected by means of a global clock signal, which synchronizes events
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throughout the whole system. In the latter, the connection between sequence and time
is maintained only locally, in the interior of the various atomic parts of the system (the
so-called “elements”), while some kind of signalling protocol is used to maintain global
consistency.

Even though synchronous systems are by far the most widely used at present, they
present some (at least, potential) serious limitation: some of these are related to the dif-
ficulties of moving information from point to point within a single global-clock period,
and of managing very large designs in a framework in which all system parts must oper-
ate together in “lockstep”. Moreover, if a system is made of many independently-timed
parts, the problem of clock synchronization becomes a major issue; unfortunately, clock
synchronization cannot be accomplished with complete reliability, due to the presence of
metastable states [Sei80].

Therefore, the self-timed discipline seems the most promising: each element can be
designed simply as a synchronous system, with the possibility of stopping and restarting
the local clock at any time. Signalling conventions are then used to synchronize the various
parts in a delay-insensitive fashion (i.e., in a way which abstracts from communication
delays).

In this subsection, we shall first present some examples of signalling protocols which
are typically used in the design of self-timed systems; then, we shall further discuss some
implicit assumptions which are usually considered when using the self-timed approach,
introducing the notion of “equipotential region”. Finally, we shall see how this is related to
some idea of observability which can be described by using tolerance-continuous functions.

Two-cycle vs. four-cycle signalling

Consider an asynchronous system with two agents which must interact: one agent (called
master) is to request the other (called slave) to process a certain set of data, and the
process should proceed with the slave providing an output back to the master. We assume
that there is no global clock for synchronizing the communication between master and
slave, which amounts to saying that the communication process requires a non-negligible
delay, and the protocol must guarantee correctness regardless of the delays. Such protocols,
or signalling conventions, are usually termed delay-insensitive, and are typical in every
approach to the design of asynchronous systems.

There are two kinds of communication lines from the master to the slave: the first is
represented by the input data I to the slave, and the second by the signal lines needed to
perform the communication protocol. Also, two kinds of lines exit from the slave, i.e., the
output lines O and the lines providing feedback signals to the master.

The easiest way to implement the communication protocol is the following. Suppose
that there are only two signal lines, one from M (the master) to S (the slave), called the
request line (req), and one from S to M, called the acknowledge line (ack), both of them
carrying binary information (so, they can be either low or high). Initially, both req and
ack are low (in symbols, req |, ack |). The protocol proceeds as follows: when M has
prepared the input, it asserts req (req 1) and leaves the input stable (untouched), in order
to allow S to read it correctly. When S notices that req is high, it processes the input,
prepares the output, and then signals back to M by asserting ack, which so becomes high.
When M notices that ack is high, it can read the output.
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Figure 2.3: Two-cycle signalling (space-time diagram)

This protocol is known as two-cycle signalling, and could be depicted in a waveform
space-time diagram as shown in Fig. 2.3.

We interpret the diagram as follows: req and ack are depicted simply as lines which
can be either low (2) or high (_~); I and O can be either stable and correct (straight line)
or not (dashed area).

For sake of simplicity, we assume to have a global (real) time axis. Initially (at time 0)
req and ack are low. At time ¢y, inputs are ready and the master asserts req (time #;).
When the slave notices this, it prepares the output (time ¢2) and asserts ack (at time ¢3).
When M notices that ack is high, it reads the output and changes the input, preparing it
for a new request (time ¢4). Now, when input is ready (at time ¢5), and it unasserts req
(which happens at tg), to let the slave know that a new input is to be processed.

This starts another request /acknowledge cycle (the first cycle is that appearing between
the two dotted lines in the above diagram), which is similar to the previous one, but where
the roles of low and high are changed, because now the two signal lines are both high.

The master and slave algorithms can be written informally as follows:

MASTER = loop
prepare input;
Jlip req;
wait ack;
read output;
forever

SLAVE = loop
wait req;
process input;
prepare output;
flip ack;
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Figure 2.4: Two-cycle handshaking (space-time diagram)

forever
Here, we used the two following primitives:

e flip change the value on a line (if it was low, it becomes high, and viceversa);

e wait wait until the value on a line changes.

In the very special case of a communication where both input and output are empty,
this protocol reduces to a simple handshaking protocol, the so-called two-cycle handshak-
ing. In this case, the space-time diagram (which now involves only the req and ack lines)
is simply that presented in Fig. 2.4 (as usual, we have used a pair of dotted lines to rep-
resent a single request/acknowledgement cycle; observe that the cycles start alternatively
with either both lines high, or both low).

The problem with two-cycle signalling (or handshaking) is that it requires the master
and slave to contain an additional state for “remembering” which is the current state of
the request/acknowledge line, and to flip them accordingly. In practice, we need an extra
storage for keeping track of the state of each line.

In order to solve this problem, one could design a more complex (from a transition
viewpoint) solution, where the two lines are reset at the end of each cycle, so that mas-
ter/slave have no need to keep track of the current state of the outgoing lines. This is
called the return-to-zero signalling, or four-cycle signalling.

The waveform diagram of a four-cycle signalling is shown in Fig. 2.5.

Let us see how a single signalling cycle proceeds in this case. Initially, both lines are
low. At time ty, the input is ready, and so M asserts (time ¢1) the request line to let
the slave know that data are ready to be processed. When the slave notices that req is
high, it reads the input, processes the data and produces an output (at time ¢2), and then
asserts ack (time ¢3): now, both lines are high. As soon as the master notices that ack is
high, it can read the output (which is currently stable), while the input becomes unstable
(in the sense that the master can change the input value at will; this happens at time
t4). In practice, ack becoming high is the signal of “output ready”. When the master has
completed its usage of the output, it unasserts req (at ¢5): only at that point, the slave is
authorized to change the output (at time ¢s) and unassert the ack line (time t7).

Observe that both lines are low at the end of the cycle. In practice, the state of the
two lines can be thought as follows:
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Figure 2.5: Four-cycle signalling (space-time diagram)
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Figure 2.6: Four-cycle handshaking (space-time diagram)

e both lines are low: master has not yet submitted any request; slave is ready to
process data;

e req is high, ack is low: master has prepared the input data (which are currently
stable) and a request has been submitted to the slave;

e both lines are high: output from the slave is ready; in this phase, output is stable,
while input may be changed;

e req is low, ack is high: master has been served, and the output may be changed;
slave will become prompt to serve another request.

Notice that for the master to submit a new request, ack becoming low must be noticed
by the master, for otherwise he would not know whether the slave has been already
acknowledged that the previous output had already been read.

As before, we can ignore the data part, and sketch a simple handshaking scheme (the
four-cycle handshaking) as in Fig. 2.6.

Observe that the algorithms corresponding to four-cycle signalling are more complic-
ated, because they involve more transitions, but they do not make use of the flip primitive
(which requires extra-memory):
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Figure 2.7: The four seasons

MASTER = loop
prepare input;
set req;
wait-high ack;
read output;
reset req;
wait-low ack;

forever

SLAVE = loop
wait-high req;
process input;
prepare output;
set ack;
wait-low req;
reset ack;

forever

Here, we used only the primitives:
e sct/reset  sets a line high/low;
e wait-high/low  waits until a line becomes high/low.

In general, four-cycle signalling is more easy to implement than two-cycle signalling,
because it does not need extra-memory for keeping track of the current state of each line.

It is tempting, at this point, to represent four-cycle handshaking in the form of the
Petri net drawn in Fig. 2.7 (left), and known as the four seasons. The most interesting
fact about this net is that it can be reconstructed from the tolerance space (concurrency
relation) drawn at its right (using the techniques described by Petri in [Pet80a]), and has
been indicated [PS87] as the smallest model for his axiom system for concurrency®.

°Tt may also be interesting to observe that the partial order arising as the unfolding of this net is a
semiorder which we shall encounter again in Chapter 6.
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Implicit assumptions — Equipotential regions

The signalling disciplines described above are quite standard in the design of asynchronous
circuits, yet we believe that a more thorough understanding of the implicit assumptions
underlying such protocols is necessary.

As a matter of fact, we are dealing with an asynchronous system, which works in a
self-timed fashion, and where the control is completely delegated to the single elements:
there is no concept of (global) clock, but there exists a fully distributed protocol which
aims at correctly sequencing the single events. A self-timed system is an interconnection of
parts, which are called elements (in the case of our example, there are only two elements,
the master and the slave): we can assume that each element has some way to preserve
correctness in the sequence of events occurring locally; for example, each element may
possess an internal clock which makes things happen in the right sequence.

The main problem in the design of a self-timed system is to preserve correctness in the
global sequencing of events, even though there is no global clock to synchronize actions
taking place at different elements. In order to accomplish this task, there are special signal
lines which are used by the elements to communicate with one another, e.g., by indicating
that a certain computation is allowed to start, or that another one has been completed.
An important point, here, is that correctness of the signalling protocol must not depend
on any assumption about delays (and, for this reason, we often speak of delay-insensitive
protocols). In other words, the sequencing of events must be correct regardless of the
delays in the communication between different elements.

One should interpret with care the necessity of preserving causal relations in the se-
quencing of events, since elements and connection between elements have some physical
extent: according to relativistic principles, relations between occurrences of events at
different points in the space may be interpreted inconsistently by observers at different
locations. Moreover, if the routing and relative transmission delays are uncertain, a rela-
tion that holds in a certain physical region close to where it is created may fail to hold
elsewhere. This simple observation has many consequences, and could make the discus-
sion about properties of asynchronous systems much more complicated than is justified:
in order to avoid such difficulties, one usually makes a simplifying assumption, admit-
ting that there are small areas in the system where delays are negligible, and thus the
communication can be assumed to take place instantaneously.

Such small pieces of the circuit (system) are called equipotential regions; as Seitz [Sei80)]
observes:

This approximation is justified so long as the area is sufficiently small that
the delay associated with equalizing the potential across any wire is small in
comparison with switching delays or signal transition times. This approxima-
tion is roughly equivalent to an assertion that related occurrences are known
to be sufficiently separated in time in comparison with wire delays that the
relation will be observed to hold from any point of observation within the
region.

The determination of equipotential regions is not at all obvious, and may be chosen on
many different criteria; it can be characterized by defining a limit on the area, or on the
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Figure 2.8: Equipotential regions defining a covering

maximal wire length within a region, and these limits will usually depend on the various
layers. As Seitz notices, as far as MOS technology is considered, “a single chip is today
[in 1980] a good approximation of an equipotential region | ... |, so long as there are no
metal wires longer than about 17 mm, diffused wires longer than about 500 u, or poly
wires longer than about 300 p”.

Clearly, it is necessary for every element to be contained entirely within at least one
equipotential region, but it can be included in more than one: this expresses the fact
that elements are interpreted as locally synchronized parts of a system which is globally
asynchronous. Equipotential regions thus do not partition the system into disjoint com-
ponents, but rather define a covering of the set of spatial locations, each element of the
covering corresponding to a single equipotential region, like in Fig. 2.8.

There is a very simple, yet meaningful, way of thinking about equipotential regions.
Suppose, in a very rough view of the system, that each element is represented by a point
in the Euclidean space, with a full-connection scheme (i.e., every point can communicate
directly to any other), and that signal delays are proportional to the distance between
sender and receiver; further, let v be the velocity of signals. The time required for a signal
sent by x to reach its destination y is thus d(x,y)/v where d(z,y) denotes the distance
between z and y. Seen in another way, the set of points to which = can signal within
time ¢ is simply the set of all points whose distance from z is at most v - t. This defines
a “forward” cone from each space-time point (called posterior cone in [Car58]): in other
words, for every space-time point P there exists a “cone” of space-time points in the
future to which P can signal. Of course, there is also an entire region of space-time in the
past which can signal to P (called the “backward cone”, or prior cone). This situation is
pictured in Fig. 2.9, where the backward and forward cones of a point in a one-dimensional
space are represented (the horizontal line corresponding to a time-slice, i.e., to a set of
space-time points whose time coordinate is constant); a similar picture is presented in
[Ben91] (Chapter 1.2, Fig. 5).

Assuming the presence of equipotential regions is equivalent to assuming that signals
propagate simultaneously within each region, as soon as they enter it. Fig. 2.10 shows the
forward signalling cone relative to a point in the one-dimensional case, when a structure
of equipotential regions is assumed.
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Figure 2.10: Approximated forward cone when equipotential regions are assumed
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Now, we want to attack the problem of defining in a more formal way the concept
of equipotential region, and provide a notion of “observability” which is suitable for a
description of an asynchronous system as discussed above. One primitive idea which we
certainly need is the concept of space location; we let L be the set of locations, which
are simply the (unextended, idealized) entities where computation takes place in some
unspecified way. The set of locations is covered by equipotential regions; in other words,
we have a fixed set R C (L) of regions satisfying the following constraints:

e every region R € R is a non-empty (possibly infinite) set of locations;

e every location belongs to some region; i.e., for all [ € L there exists some R € R
such that | € R;

e if R, R' are two regions, and R C R', then R = R'.

The two first requirements simply state that R is actually a (proper) covering of L; the last
requirement means that we are only interested in “maximal” regions (i.e., equipotential
regions cannot be nested).

As a matter of fact, we can make some stronger assumption about the structure of
equipotential regions; indeed, as previously discussed, an equipotential region is simply
a (maximal) set of points in the circuit which are not too far away from each other. In
other words, a region is defined by a ball in the Euclidean metric space of a fixed (small)
radius . Under this assumption, which implies that delays depend only on the physical
distance between points, the set of regions may be described by using a binary relation of
“vicinity”.

Two locations [ and I’ are said to be adjacent if they are sufficiently close to each other
(i.e., if their distance does not exceed the limit required for the level of approximation
we are using), and we denote this fact by [ col’. Thus the covering R is simply the set
of maximal cliques of co (a region is a maximal set of adjacent points). Note that the
set of regions is not a partition of L, unless co is an equivalence relation. As a matter
of fact, overlapping of regions is not an accident, but a precise consequence of space-time
continuity of signals: a signal can be directly forwarded only to a point which is sufficiently
near in the space, which means that L must actually be connected under co (in the graph-
theoretical sense), in turn implying that R is actually a covering and not a partition of
the set of locations. Hence, formally, the relation co of vicinity is a symmetric, reflexive
(but, in general, not transitive) relation, whose transitive closure is the complete relation
L x L.

Now, we turn our attention to observations. We can assume that there is a set V' of
views, each corresponding to a (partial) description of the state of the whole system. Each
location, at each moment, will observe a certain view. In general, as a consequence of
transmission delays, two different locations may possess, in the same instant, two different
incompatible views of the state: this may happen because information flows in the system
with a non-negligible delay. In order to describe this formally, we introduce a predicate
Con of consistency; more precisely, Con C pg, (V) is a finitary predicate such that:

e every view is consistent; i.e., for all v € V', we have {v} € Con;

e every subset of a consistent view is also consistent; i.e., if A € Con and B C A, then
also B € Con.
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Another simplifying assumption is needed at this point, in order to make the discussion
easier. We can assume that consistency is described by a binary compatibility relation ~,
which is a symmetric and reflexive relation'. In other words, a set is consistent if and
only if it is a clique of the relation ~.

We are now ready to relate the notion of vicinity to the concept of consistency (or
compatibility). In practice, even though the views at a given instant may be inconsistent
at different locations, consistency is required when the locations are adjacent: this is what
we mean when saying that “the relations produced anywhere in one region hold everywhere
[in the same region|” [Sei80]. Formally, the instantaneous observation of a system state is
simply a function o : L. — V assigning a view to each location in such a way that views
assigned to points in the same region are consistent. In other words, we require that:

VR € R,VA Cg, o(R). A € Con.

Note that consistency is expressed by saying that every finite subset is consistent.
Under our simplifying assumption, this is absolutely equivalent to requiring that the
compatibility relation holds between views of adjacent locations, i.e.,

VI,I' € R.lcol! = o(l) ~ o(l').

In fact, this happens if and only if the function o : (L,co) — (V,~) is a graph morphism,
or (a term which we shall introduce later on) a “tolerance-continuous” function.

To summarize: we can describe the spatial geometry of the system as a tolerance
space (i.e., undirected graph), where tolerance corresponds to vicinity, and use tolerance-
continuous functions (i.e., graph morphisms) to describe observations, where the codomain
is also a tolerance space of “views”, with tolerance corresponding to compatibility. In a
slogan, we can conclude by saying that “observability implies continuity”, in the sense
that every observable state is a continuous function.

2.2.2 Tolerance relations and axiomatizations of relativistic time

In this subsection, we shall make a short digression about the possibility of axiomatizing
relativistic time, and prove how the relativistic notion of simultaneity assumes unavoidably
the form of a tolerance relation. Our discussion is based on the axiomatization given in
Chapter 1.2 of [Ben91].

Precedence and simultaneity in a relativistic setting

Let us go back for a while to the representation of Fig. 2.9: in that case, we were considering
a very simplified form of space-time, where space is just one-dimensional (i.e., we are
working in the Minkowski two-dimensional space). Since we aim at studying a relativistic
description of the physical world, we take ¢ (the light velocity) as our signalling velocity.

'0This assumption is far from being harmless, but later we shall see how one can get rid of it, working in
a more abstract setting. In fact, we shall later introduce the notion of “generalized tolerance space”, where
tolerance is not taken to be a binary relation, but rather a finitary predicate satisfying exactly the same
restrictions as Con. If we endowed both the set of locations and the set of views with such generalized
tolerance relations, we would obtain much the same results.
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Figure 2.11: Signalling cones in the (rotated) two-dimensional Minkowski space

Thus, the forward cone of a point P in the space-time is just the set of future space-
time points which can be reached from P by a signal travelling at the light velocity. A
great simplification can be introduced, by assuming that ¢ = 1 and by rotating the whole
diagram clockwise over 45°: in this way, the forward and backward cone of the origin are
simply the first and third quadrant (see Fig. 2.11).

Clearly, one can at this point introduce a precedence relation between space-time
points, by postulating that

(z,y) < (2',9) &= z<2’ Ny<y

(which expresses the condition under which the point (z,y) may signal to (z/,y'), i.e.,
(«',9') is in the forward cone of (z,y)). It is worth noticing that there is no special reason
to assume that space and time have the structure of R: we can take space-time to be Qx Q
or even Z x Z, if we just need an approximation having countably many points. (This is
in fact what one does when dealing with tools for measuring time and space having only
a finite resolution power).

Now, let P and () be any two points in the space-time; clearly, several possibilities
may arise:

e P and (Q may be causally related, in either direction; i.e., we might have either
P<QorQ<P;

e it is possible that P and () are not causally related, simply because only a signal
travelling exactly at the velocity of light can connect them; we therefore define a
new relation <. (which Van Benthem calls “connectability by the speed of light”)
by postulating that

P<.Q < —-(P<Q) AVR.(Q<R = P<R);

in other words, P cannot signal to (), but P can signal to every point to which @
can signal;
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Figure 2.12: The relations of precedence, connectability by the speed of light and simul-
taneity

P<Q

e finally, if no one of the relations P < Q, Q@ < P, P <. @, Q <. P holds, we say that
P and @ are concurrent, or simultaneous, written P co Q).

We present, in Fig. 2.12, how these different possibilites are realized by different points in
the space-time diagram.

Now, observe that concurrency is clearly a reflexive and symmetric relation, but it is
not transitive, i.e., it is simply a tolerance relation, and not an equivalence: this should not
be surprising, after all (the same situation happens in the context of concurrency theory,
where concurrency is always assumed, or turns out to be, a tolerance relation). But, is
it possible to do any better? In other words, is there some way of defining simultaneity
(concurrency) in a relativistic setting as to obtain an equivalence?

We shall answer negatively to the above question, by making a short digression into
model theory. Observe that these observations will naturally lead to consider tolerance as
the only serious candidate for simultaneity in (relativistic) physics.

First, we can assume that precedence in space-time is the only primitive relation, from
which simultaneity should be defined by means of some logical construction. In the above
discussion, we precisely defined it as follows:

Pewo@ < —~(P<Q)A~(Q<P)AIR,R.(P<RA-(Q<RAQ<R A=(P<R)).

In any case, simultaneity is defined “somehow” starting from precedence; but what kind

of definability should we admit? We can restrict ourselves to first-order definability, or
consider also higher-order logic; we quote Van Benthem’s [Ben91] considerations on this
subject:

Why all this fuss about ‘first-order’ versus ‘higher-order’? Non-logicians are
inclined to think that this is a mere logician’s fad. Yet this would be a mistake.
The borderline between the two is a philosophically significant one, as Quine
has argued repeatedly. To mention just one aspect, second-order principles are
much more sensitive to the ‘set-theoretic investment’ made in the background
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theory of our temporal structures. This shows in the independence proofs of
set theory, where various ‘real continua’ may arise from the same Dedekind
construction on the rationals, depending on the (kind of) subsets available for
R in the set-theoretic universe. In using second-order principles we are not
only discussing our temporal order, but also its super-imposed set-theoretic
structure.

In the light of these statements, it seems reasonable to use only first-order logic for
deriving non-primitive relations from primitive ones (and, in particular, for deriving the
simultaneity relation starting from precedence).

In the following subsections, we shall prove that, in fact, it is not possible to define
simultaneity (in the space-time structure) as an equivalence relation.

A short digression in model theory

Before proceeding in our discussion, a small digression in model theory is required; we are
not laying any claim of precision in this discussion, and refer the reader to the specialized
literature on the subject for more information (see, for example, Chapter 5 of [BM76]).
A first-order language L is defined by the following data:

e an indexed family (R;);cr of predicate symbols, each with a fixed ariety A\; € w;
e an indexed family (c;);cs of constant symbols;

e a countable set {vg,vi,...} of variables.

An L-term is either a constant symbol or a variable. The set of L-formulas is then
recursively defined as follows:

¢ atomic formulas are of the form R;(t1,... ,ty;) where the t;’s are L-terms;

e if ¢,1) are L-formulas, then also —¢, (¢ A 1) and Vv, ¢ are formulas.

We let FV () be the set of free variables'! of the formula ¢; we say that ¢ is closed if
FV(¢) is empty.
An L-structure i is defined by:

e a non-empty set U (called the “domain” of il);
e an indexed family (R;)scr of relations on U, with R; having ariety \;, i.e., R; C UM

e an indexed family (c;);cs of elements in U (i.e., ¢; € U for all j € J), one for each
constant.

We often say that L is the language of 4. An L-assignment « for the structure 4 is a
function mapping each variable v,, to an element (vy,) (or simply ) of U.

The interpretation U*(t) of a term ¢ in the structure 4, under the assignment «, is
defined as ¢; if t = ¢;, and as oy, if £ = vy.

Now, satisfaction of a formula ¢ by the structure i (under the assignment «), written
U =q @, is defined inductively as follows:

"'More formally, the set of free variables of a formula can be defined inductively as follows: the free
variables of an atomic formula are exactly those variables occurring in the formula; moreover, F'V (—¢) =
FV (), FV(¢p A ¢) = FV(¢) U FV (¢) and finally FV (Vv,¢) = FV(é) \ {vn}-
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o U =4 Ri(t1,... ,ty,) if and only if the tuple (U*(1),... ,4%(¢),)) belongs to R;;
e il =4 —¢ if and only if U |, ¢ does not hold;
o =4 (¢ A 9) if and only if both U =, ¢ and U =, 9 hold;

o i |=q Vv ¢ if and only if, for all u € U it holds that { =4y, /o) ¢, Where afvy, /u] is
the assignment which is the same as « except for the variable v, which is mapped
to u.

It is easy to see that the validity of i =, ¢ only depends on the values assumed by « on
the set F'V(¢). In other words, if 4 =, ¢ holds, and if § is another assignment which
coincides with o on every free variable of ¢, then also il =3 ¢. In view of this observation,
we can use a shortcut: if ¢ contains n free variables, we shall write 4l =4, . 4, ¢ to mean
that U |=, ¢ holds whenever the value assumed by a on the i-th free variable!? of ¢ is
a; (i=1,...,n). In particular, if ¢ is a closed formula, we simply write il |= ¢, because
satisfiability for closed formulas does not depend on the assignment.

Now, every formula ¢ with n free variables defines an n-ary relation R® on U, in the
following precise way:

(a1,... ,an) €ER? <= U, an b

An n-ary relation R in the structure 4l is (first-order) definable if there exists a formula
¢, with n free variables, such that R = R?.

Now, consider an n-ary relation R on a set U, and a bijection f : U — U; we say that
R is invariant under f if and only if, for all (a1,... ,a,) € U™

(@1,... ,ap) € R <= (f(a1),-..,f(an)) € R.

In particular, a (structure) automorphism for il is a bijection f of the domain of 4l into
itself such that R; is invariant under f (for every i € I), and f(c;) = ¢; for all j € J. The
following quite standard result of model theory will be used in the following:

Theorem 2.2.1 Let il be a structure, R an n-ary relation which is definable in U, and f
an automorphism of 4. Then R is invariant under f.

Proof: Since R is definable, there will be a formula ¢ (with n free variables) such that
R = R®. We proceed by induction on the structure of ¢.

e Suppose that ¢ = R;(t1,... ,tm). Then:

(ala"' ) @ ) € R? — ulzal, +y0n Z(tl m)

— (uala ;an(tl) uala aan(t )) € R;

<= (R; being invariant under f) (Uf(@)rflan)(3)) o gyf(@)flan) (3 V) € R,
— U |_ fla1),...,f(an) R; (tla atm) <~ ( ( )’ s 7f(a'n)) € R?.

vbd

12We take as natural order between variables the one induced by their indexes.
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e Suppose that ¢ = (¢ A ). Then:

(a1y-.. ,an) € R® <= U k. .0, (0 A D)

— U |:a1,...,an 2 and U |:a1,...,an "/)

< (ay,...,a,) € R? and (ay,... ,a,) € RY

— (f(afl)a T 7f(an)) € R¥ and (f al)a"' 7f(a'n)) € R"/f
= UEfa),. flan) P a0d U Eray), . flan) ¥

— U |:f(a1),...,f(an) (‘P A ’l,b) — (f(a'l)a- - af(an)) € R?.

e Suppose that ¢ = —p. Then:

(al, e ,an) €ER? —= Izal,...,an -

< not U =g, a0, ¥ <= (a1,...,a,) € RY <= (f(a1),...,f(an)) € RY
<= 10t U F)fay),... . flan)P = U Efar),....flan) 7P

— (f(a'l), s ,f(a’n)) € R¢

e Finally, suppose that ¢ = Vx1. Then:

(a1,...,an) € R® <= U=, a, VX
<~ forallueU, U |:(a1,...,an)[x/u] Y <= (ay,...,a,)[x/u] € RY;

now, (ai,...,an)[x/u] is a vector which coincides with (a1,... ,ay), except (pos-
sibly) for the position corresponding to the free variable x of ¢, where it has value
u. But then:

(a1,... ,an)[x/u] € RY < (f(a1),-..,f(an))[x/f(u)] € RY
= for allu € U, U = (far),.... fan))x/u] ¥
<= (since f is bijective) for all u € U, U F(y(ay),...,f(an))x/u] ¥

= UFEfa) flan) VXY = (f(a1),..., f(an)) € R.

This completes the proof. O

Relativistic simultaneity is not an equivalence relation

With the help of Theorem 2.2.1, we shall now be able to prove that no non-trivial equi-
valence relation is first-order definable in the space-time starting only from precedence
relation. This explains why the previously defined simultaneity (which is an intransitive
relation) is the best possible definition of concurrency in a relativistic setting. Our results
are actually a rephrasing (and a bland generalization) of Theorem I1.2.1.5 of [Ben91].
Theorem 2.2.2 No non-trivial'® equivalence relation is first-order definable on the struc-
ture (Q, <) (where < is the standard linear order for the rationals).

Before proving Theorem 2.2.2, we need the following

Lemma 2.2.1 Let q,q',q" € Q be three distinct rationals, with ¢’ < q <= ¢" < q. There
exists an automorphism fg'_’q” of (Q,<) such that fg'_’q”(q) =gq and fg'_”/' (¢") =4q".

13 An equivalence relation is trivial if it is either the identity or the universal relation.
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Proof: Let f = fg'_’q” be defined as follows:

flz) = (¢" - q)wlt(q’ —4q")g
7 —q

It is immediate to prove that, under the condition assumed on q,q¢’,q", we have z < y
if and only if f(z) < f(y). A straightforward check proves that in fact f(¢g) = ¢ and

fld)=4". O
Now we can come to the proof of the theorem:

Proof of Theorem 2.2.2: Let ~ be a definable equivalence relation different from the
identity, and suppose that  ~ y and z # y (say, z < y). By Theorem 2.2.1, ~ is invariant
under every automorphism of (@), <) and so, in particular, under the automorphisms
defined in Lemma 2.2.1. Take any z # y with < z: since z ~ y we have f¥7%(z) ~

¥7%(y), which means z ~ z. Moreover, for any z < z we have f77%(z) ~ fy7*(y), i-e.,
z ~ gy. Using transitivity, we thus have that every point is related to z under ~, i.e., ~ is
the universal relation. O

By using exactly the same arguments, one can show that the same happens for (R, <).
We now pass to the Minkowski two-dimensional space, taking QQ as underlying field (but
the same is true for R); this is exactly Theorem 1.2.1.5 of [Ben91], even though our proof
is slightly different, and uses Theorem 2.2.2.

Theorem 2.2.3 (Van Benthem [Ben91]) No non-trivial equivalence relation is first-
order definable on the structure (Q x Q, <), with < defined componentwise.

Proof: First observe that, if f, g are automorphisms of (Q, <), then

(f9): @xQ — QxQ
(z,y) = (f(2),9(y))

is an automorphism of (Q x Q,<); in fact (z,y) < (z/,y') iff z < 2’ and y < ¢/, which
happens iff f(z) < f(2') and g(z) < g(a'), ie, (f,9)(z,y) < (f,9)(z',y). Now, by
combining in the various possible ways the identity map 1g and the automorphisms of
Lemma 2.2.1, and by using the same arguments as in the proof of Theorem 2.2.2, we
obtain the result. O

In conclusion, the way we used to define simultaneity is not only satisfactory and
intuitive, but there is no way of defining it as an equivalence relation by starting only from
relativistic causality (precedence). In other words, simultaneity is unavoidably a proper
tolerance relation (and not an equivalence), at least if we allow only for quantification over
space-time points in our metalanguage, as the above quotation suggests.



Chapter 3

An introduction to partial order
and domain

In this chapter, we shall introduce some basic notions of domain theory. Some of the
results presented here are quite standard, and can be found for example in the survey
[ S90]; some other theorems are new, and will be useful in the sequel. We shall prove all
the results which are non-trivial or which cannot be found directly in the literature.

A preorder (or quasi-order) on a set P is a relation  which is reflexive and transitive. The
pair = (P, ) is called a preordered set; when no confusion arises, we use P ( ) and

(possibly, with special subscripts) to denote the underlying set and preorder relation of
the preordered set  ( , respectively). If  is also antisymmetric, i.e. if

Ve,yeP.(z yANy z) = z=y

then we say that is a (partial) order on P, and that is a partially ordered set (or
poset, for short). If moreover for all z,y € P either z  y ory z holds, we say that
is a total (or linear) order.
The covering relation associated with , usually denoted by -, is defined by putting
z -y iff
z#y Nz yAVz.(z 2z y=zx=2 2z2=y).

In other words, - = 2. we say that  is combinatorial if it coincides with the reflexive

and transitive closure of!
Now, let be a poset, X C P and € P; we shall say that

e s an upper bound (lower bound) for X, and we write X ( X, respectively),
iff © ( z, resp.) for all x € X; if X has an upper (lower) bound, we say that
it is compatible (lower compatible, resp.), and write it as X 1 (X |, respectively);

In general, it is properly included in it. or example, the poset  of rationals w.r.t. their natural
ordering gives rise to an empty covering relation.

33
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Figure 3.1: A consistently complete poset which is not coherent

e s the least upper bound (greatest lower bound) for X, and we write = X
( = X, resp.), iff is an upper (lower) bound for X and, if ' € P is another
upper (lower) bound for X, then ! , resp.); if moreover € X, we say
that is the mazimum (minimum, resp.) of X, and sometimes write max X (min X)
instead of X ( X);

e X is directed iff it is not empty and for any two z,z’ € X there is some z"” € X such
that {z,2'} 2.

It is customary to use the notations x 1y, x1 2 ... T, andz; 22 ... x, as
abbreviations for {z,y} 1, {z1,...,z,} and {z1,...,z,}, respectively. Moreover, for
every A C P we let | A (T A) denote the set of lower bounds (upper bounds, respectively)
of A (in the special case when A is a singleton, brackets are omitted).

A precpo (pre-complete partial order) is a poset  such that, for every = C P which
is directed, exists. In particular, a cpo (complete partial order) is a precpo which
contains a minimum element, usually indicated by L, and called bottom.

If every compatible subset of P has a least upper bound, we say that the poset is
consistently complete (other terminology: Dedekind-complete). A stronger condition is
coherence; a subset X C P is pairwise compatible if and only if for any two elements
z,y € X it happens that z 1 y. If every pairwise compatible subset of P has a least
upper bound, we say that the poset is coherent. Note that clearly every coherent poset
is consistently complete (because a compatible set is also pairwise compatible), but the
converse is not true, as witnessed by the poset represented? in Fig. 3.1.

It is rather easy to prove that, if  is a consistently complete poset, then every non-
empty subset has a greatest lower bound: this happens because the greatest lower bound
of a set is simply the least upper bound of the set of lower bounds.

If and ' are two cpo’s, we say that a function f : P — P’ is
e monotone if z y implies f(z) f(y) (i.e., f is a poset homomorphism);

e continuous if it is monotone, and moreover, for every directed set C P, it holds
that f( ) = f( ) (the HS is well-defined, because f( ) = {f(d),d € } is
clearly a directed subset of P’, if f is monotone);

2A poset is usually represented using its asse diagram; in a asse diagram, the elements are drawn
as points, and holds iff there is an ascending path going from the point representing to the point
representing . To be more precise, the asse diagram is a conventional way to represent the covering
relation associated to the partial order.
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o strict if f(L) = 1%

e an isomorphism if it is monotone and there exists a monotone function g : P’ — P
suchthat g f=1 and f ¢g =1 /; or, equivalently, if f is one-to-one, onto and
for any two elements z,y € P it holds that z y <= f(z) ' f(y);

e additive if, whenever z y exists, also f(z) f(y) exists, and f(z y)= f(z) f(y).

Note that one can define an order between functions: given two functions f,g: P — P,

define f g if and only if f(z) g(z) holds for all z € P. This is called the pointwise

ordering of functions. We usually denote the poset of continuous (strict and continuous)

functions between two posets , ' (with the pointwise ordering defined before) by [ —
'l (respectively: [ — ']).

Let  be a cpo; an element z € P is compact (or isolated) iff for every directed set
C P it holds that

T — dde .z d.

The usual way one should think of a compact element is by interpreting it as a “finite”
approximation. In fact, we can just imagine that the order describes the information
content of each element: an isolated element z is one which has only a finite information
content, because every time we can gather all the information of x, we can do it also in a
finite fashion.

The set of compact elements of P is denoted by P°; we define, for all the elements x
of P, the set (z) =] N P°. The cpo is algebraic iff for every z € P, the set () is
directed, and moreover (z) = z. It is w-algebraic if moreover P° is countable.

A domain is an algebraic cpo; it is a cott domain if it is moreover consistently com-
plete. Here are some properties concerning the relations between compact elements and
continuity of functions between domains:

Pro erty 3.1.1 Let ¢, 1 be two domains:
. a continuous function is uniquely identified by its restriction on the set of compact
elements in other words, if f,g: o — 1 are continuous and f(d) = g(d) for all
de §,then f=g

2. a function f: o— 1 is continuous® iff for allz € ¢ and all € %

1 f(z) <= 3ae (z). 1 f(a);

. for every monotone function f: §— { there is exactly one continuous function
0 — 1 extending f

3This is also known as the version of continuity; in fact, it can be informally stated as follows:
if is a finite approximation of ( ) then there is a finite approximation of , whose image has also
as a finite approximation. In other words, it is always possible to find a sufficiently “good” approximated
input to a continuous function, if we just need an approximated result.
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Proof: () Letx € (;thenz=  (z),andso f(z) = f( (z)). By continuity of f we
obtain f(z) = f( (z)). But now, f and g coincide on the set of compact elements; thus
SO (2))=g( () andso f(z) = g( (z))=g( (2)) = g(z) as required.
(2) First suppose that f is continuous; the only non-trivial implication is = (the
other follows by monotonicity). Now 1 f(  (z)) = f( (z)). But is compact and
f( (z)) is a directed subset of 1; so there must be an element f(a) (witha ¢z and a
compact) such that 1 f(a), as required.
For the converse, we firstly prove that f is monotone. Suppose that z ¢ y: if is
isolated in 1 and such that 1 f(z), then there is some a € (z) such that 1 f(a).
But ¢ ¢ y and 1 f(a), and so 1 f(y) (using the right-to-left implication of the
hypothesis). Thus, for every compact element one has 1 f(z) = 1 f(y), ie,
(f(z)) € (f(y)) and so f(z) 1 f(y). Then, using algebraicity, we obtain that f must
be monotone. Continuity is then proved analogously.
() Define (z) = f( (z)), which is well-defined, since ¢ is algebraic and f is
monotone; clearly, extends f (because, if d is compact, then f(d) € f( (d)) and so

(d) = f(d)). To prove that is continuous, we shall use — continuity. Let z €
and € 7;since is monotone, only the left-to-right implication needs to be proved. If
1 () = f( (z)) then, since is compact, there must exist some compact element

a € (z)suchthat 1 f(a), as required. O

A very useful notion in domain theory is the concept of ideal, which allows one to
complete a poset in order to obtain a domain. Let be a poset with minimum element
1; a (directed) ideal of is a set I C P such that

1. I is directed;

2. I is downward-closed, i.e., | I = I (or, equivalently, if z € I and y =z then also
y eI).

In particular, for each x € P, the set | z is an ideal of |, called the principal ideal generated
by z. The set of ideals of ~ will be denoted by Idl(P), and the same notation will sometimes
refer to the corresponding C-poset, which is usually called the “ideal completion” of

The following result explains why ideals play an important role in the theory of do-
mains:

Theorem 3.1.1 Given a poset  with minimum, the poset dI(P) is a domain whose
compact elements are precisely the principal ideals of . onversely, if is a domain,
the poset dl( °) is isomorphic to

Proof: For the first part, clearly Idl(P) has minimum {L}. If C Idl(P) is a directed set,
we prove that I = U is an ideal (and thus it is the least upper bound of ). Suppose
z €l andy x; then x € J for some J € , and so y € J C I. Now, suppose that
z,y € I; then z € J,y € J where J,J' € . But is directed, and so there is some
J" € such that z,y € J”. But J” is directed, and so there is some z € J" C I such that
{z,y} =z, as required.

For the compact elements, if | x € U , where is directed, then in particular z € U
and so | z will be included in some element of . Conversely, suppose that I is a compact
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ideal, and let  be the set of the principal ideals generated by the elements of I. This set
is directed (in fact, if | z,] y € , then z,y € I, and so there is some z € I such that
lz Clzand |y C| 2), and clearly U = I; so there is some element of in which 7 is
included, and thus I is a principal ideal. The fact that Id1(P) is algebraic follows directly
from this observation.

For the second part, consider the usual function = which maps each element of into
the set of the compact elements below it. This is injective, because, by algebraicity,

(z) = (y) implies (z) = (y) and hence z = y. It is also surjective: if I is an
ideal, then let z = I (which exists, because I is a directed set). Clearly (z) =1I. So
is an order-isomorphism. O

This theorem in particular implies that every domain is uniquely determined by the
poset of its compact elements, from which it can be completely recovered by ideal com-
pletion.

Let us go back for a while to the — version of continuity ( roperty 3.1.1); recall that a
function f: ¢ — 1 is continuous if and only if forallz € gandall € ¢

1f(z) <= Ja€ (z). 1 f(a).

In other words, given any input z and any finite approximation of the output determined
by z, there exists a finite approximation of the input which leads to an approximation of
the output “not worst than”

The problem here is that there is no canonical way to choose a: one would like to be
able to choose the least possible such input, but in general there is no guarantee that such
a minimum input exists. In other words, we would like to have a minimum finite element
M(f,z, ) which is not greater than  and whose image is not smaller than . We shall
now formalize this notion, and prove that it can be equivalently stated in a very simple
way as a preservation of compatible greatest lower bounds.

Consider a continuous function f : ¢ — 1; we say that f satisfies the minimum
modulus property iffforallz € andy € (f(x)), the set*

A(f,z,y)={ € (@):y [f()}

has a least element, which is denoted by M(f,z,y).

We shall be interested in considering stable functions between domains of a very special
kind, the so-called “dI-domains”. A domain is finitary iff (z) is finite for every z €  °;
an example of non-finitary domain is represented by the ordinal w + 2 (see Fig. 3.2): this
is clearly a domain, whose compact elements are all finite ordinals plus the element w + 1,
which has infinitely many compact elements below.

A domain is distributive iff, for any three elements z,y,z € ,ify 1z thenz (y
z)=(z y) (x =z). A finitary distributive Scott domain is often called d -domain, a

term introduced by Berry in [Ber79].

4 ote that this set is non empty, because of roperty 3.1.1 ( continuity).
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I

Figure 3.2: The ordinal w + 2

In the case of dI-domains, we can give a definition which is equivalent to the minimum
modulus property:

Lemma 3.2.1 Let f: o— 1 be a continuous function between d -domains. Then, the
following are equivalent:

. [ satisfies the minimum modulus property
2. forall z,x' € o, if xt ' then f(z ') = f(z) f(2).

Proof: The proof is simple but lengthy. We refer the interested reader to [B 92], ropos-
ition 3.10. O

A function which is continuous and satisfies the condition(s) of Lemma 3.2.1 is called
stable. The notion of stability was introduced by Berry [Ber78], with the aim of generalizing
the notion of sequentiality at higher types.

A natural question is whether we can use the minimum modulus property to define
a new notion of “order” among stable functions, which is finer than the usual pointwise
order. Suppose that f,g: ¢ — 1 are two stable functions, with f ¢ (under the usual
pointwise ordering): intuitively, this is taken to mean that f is an approximation of g, i.e.,
it always gives an output which is an approximation to that given by g under the same
input.

Let now z € ¢ and y € (f(z)): there will be a least approximation M(f,z,y) of
the input z which furnishes an output which is approximated by y. Clearly M(g,z,y)
M(f,z,y), because g always gives better outputs, but it could be the case that a poorer
approximation is enough for g to get the same result. If this does not happen, i.e., if

[ gandVre oy€ (f(z)). M(f z,y)=M(g,z,y)

then we say that f is stably less than g, and write f  g. As a matter of fact, can be
characterized for dI-domains in the following way:

Lemma 3.2.2 or any two stable functions f,g : ¢ — 1 between d -domains, with

I g

!

foge (Vdoze od 2= f&)=[(z) g(').
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Proof: For a proof, see [B 92], roposition 4.7. O

The relation is actually a partial order (called the erry order) which refines the
pointwise one, as stated in the following

Pro erty 3.2.1 is a partial order relation, and f g implies f g.

Proof: First note that, whenever f g, for all a € o, f(a) = f(a) gla) gla).
So f g implies f g. eflexivity is obvious: if @’ a then f(a’)  f(a), and so
fl@') = f(a) f(a'). For the antisymmetric property, suppose f g and g f, and
take any a € (. We have f(a) = f(a) g(a) and g(a) = g(a) f(a), thus f(a) =

g(a). For transitivity, suppose that f g and g , and let @@ a. We then have
f(a) = f(a) g(d')= f(a) g(a) (a’) which is in turn equal to f(a) (a'), because
foo9=171 g 0

The set of stable functions from ¢ to 1, ordered by the Berry order, is denoted by
[ 0= 1] in the following.

-p p

It is possible to define a notion of embedding that can be interpreted as an approximation
relation between domains, roughly in the same sense as the order relation of a domain
is taken to define an approximation relation between (the information content of) its
elements.

The standard way to do this consists in defining the so-called embedding-projection
pairs. An embedding-pro ection pair (or E  for short) between two domains ¢, 1 isa
pair of functions (f,g): o — 1, where f: ¢ — 1 (the “embedding”)andg: 1 — o
(the “projection”) are both continuous, and satisfy ¢ f=1 ,and f g 1 ,. Notice
that:

Pro erty 3.3.1 Let (f,g): o — 1 be an embedding-pro ection pair. Then f is in ect-
we, g is sur ective and both are strict.

Proof: If f(z) = f(y) then also g(f(z)) = ¢(f(y)) and (since ¢ f =1) z =y. Let now
x € o; then g(f(z)) = z and so z € g( 1). Thus, g is surjective. For strictness of f,

just observe that L; 1 f(Lg), which implies f(g(L1)) = L1, and so, since Ly ¢ g(L1),
we have f(Lg) = L; also, so f is strict. Moreover, g(L1) = ¢g(f(Lo)) = Lo, and thus g is
also strict. O

We will mainly be interested in a specialized version of this notion, introduced by
ahn and lotkin in [ 78] (see also Curien [Cur86]). An embedding-projection pair
(f,9): o— 1isa stable embedding-pro ection pair (or SE  for short) if moreover, for
allzo€e ogandz1 € 1,ifz1 1 f(wo) then 1 = f(g(z1)).
There is a strict relation between SE  ’s, stability and Berry’s order, which is made
clear in the following

Lemma 3.3.1 Let ( , ): o — 1 be an embedding-pro ection pair. The following are
equivalent:
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. (, ) is a stable embedding-pro ection pair

2. and are stable, and 1.

Proof: ( ) => (2) We first prove that is stable; suppose that y,3' € 1 withy 1 9'. By
monotonicity, (y v') (y)  (y'), so we need only prove the converse. By monotonicity,
once again, we obtain ( (y) (¥')) ( (y)) v, andlikewise ( (y) (¥') ¢, so

Now, applying to both sides, and using =1, weget (y) (v) (y ).
For proving stability of , let z,2’ € o with z 1 z/. We have to prove that ()
(z') = (¢ 2'). Note that (z) (x z') as well as () (x z'); so we get

() (2 (z '), and thus, using the definition of stable embedding-projection pair,
(z) (') = (((z) (z")) which, by stability of , equals ( ( (z)) ( (2')) =

(z ).
We should now prove that 1. Suppose that y,y' € 1 with y 1+ ¢'. Clearly
!

( (¢) ( (y) v',soweneed only prove the converse. Suppose that y”  ( (y)) v
by definition of stable embedding-projection pair, 3"  ( (y)) implies y” = ( (")) and

thus, by monotonicity of , we have ¢ ( (¥')). Thus y"” ( (y)) ¢ implies
y"  ( (¥')), and we are done.
(2) = () Suppose that y (z). Then, since 1, one has ( y) =

C )@) gie, (W)= () y= () y=yv O

Thus, we can simply say that SE ’s are just common embedding-projections provided
that we consider only stable (instead of continuous) functions, and Berry’s order (instead
of the pointwise one).

One can define the composition of two (stable) embedding-projection pairs (f,g) :

o— 1and (f',¢): 1 — oasthepair (f' f,g ¢'): aroutine check shows that this
is in fact a (S)E

There is a close relation between stable embedding-projection pairs and special subsets
of Scott domains called strong ideals. If  is a Scott domain, a strong ideal X C isa
set satisfying the following:

1. X is not empty, and downward-closed;

2. ifz,y € X and ¢ 1 y, then z y € X; i.e., X is closed under taking least upper
bounds of finite (compatible) sets;

3. if C X is directed, then € X; i.e., X is closed under taking least upper bounds
of directed sets.

An important property of strong ideals is the following (for an alternative proof, see
ahn and lotkin [ 78], roposition -8.6):

Pro erty 3.3.2 Let X be a strong ideal of the cott domain . Then X, with the inher-
ited ordering, is also a cott domain, which is coherent if  is, whose compact elements
are precisely those compact elements of  which are contained in X.
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Proof: X contains L, which is its minimum element (this follows since X # () and it is
downward-closed). If C X is directed, then € X, and so X is a cpo.
Now, suppose that x € XN °: we prove that z is also compact in X. If C X is directed

and z = , then x for some € , because x € °. On the contrary,
suppose that z is compact in X: we prove that it is also compact in . Let C  be
directed with z ,andlet ={a€X:3 € .a }. isdirected: ifa, € then
there exist , '€ witha and 's by directedness of , there is some " € such
that {a, } = ",soa? andthusa € . Nowz implies that z holds for all

€ .Sozxz € andthuszx . But z is compact in X, and therefore x  a for some

a€ . Thusalsoxz e °.
Now, algebraicity is easily proved. For all z € X, the set (£) = (z)N X is directed;

S0 (z) = ( (z)NX) =z, as required. For consistent completeness, let A X be
a compatible set. Take B =] ( A) N X: this set is directed and so B € X; but then
B = A. (For coherence, the proof is analogous). O

The aforementioned relation between strong ideals and SE  ’s is expressed by the
following

Pro osition 3.3.1 ([B 93] seealso[ P ]) f(f,9): o— 1 is a stable embed-
ding-pro ection pair between cott domains, then f( o) is a strong ideal of 1. onversely,
if X is a strong ideal of , the inclusion map i : X —  and the function : — X
defined by

d)= ( (dnX)

form a stable embedding-pro ection pair (i, ) from X (with the ordering inherited from )
to

Proof: irst part. For downward closure, if y 1 f(z) then by stability y = f(g(y)) and

so y € f( o). Suppose now that f(z) T f(y) in 1. Thenlet z = f(g(f(z) 1f(¥)));
since f g 1, wehavez 1 f(z) 1f(y). But f(z) 1 f(z) f(y)andsog(f(z)) o
g(f(z) f(y) (because g is monotone) and finally f(g(f(x))) 1 z (because f is monotone),
which means f(z) 1 z; analogously, also f(y) 1z andso f(z) f(y) 1 2. Thus finally
z = f(z) f(y), and z € f( o). Finally, suppose that C f( ) is a directed set; in

exactly the same way one proves that ; = f(g( 1 )), and so f( o) is a strong ideal.
econd part. The inclusion map is clearly continuous, and so is . Now (i(z)) = (z) =
( ()N X) ==z and conversely i( (z)) = ( (z)NX) (z) = z. Finally, stability

follows from downward-closure of X. O

Since embeddings are injective, the first part of roposition 3.3.1 simply states that,
if (f,g): o — 1 is a stable embedding-projection pair, then f( ¢) is isomorphic (via
f) to a strong ideal of 1: in fact, if f(xz) f(y) then g(f(z)) ¢(f(y)) and soz .

In the case of coherent domains, SE  ’s can be characterized in a very simple way:

Lemma 3.3.2 ( ee [B  93]) Let ¢, 1 be coherent domains, and f: o — 1 bea
continuous additive in ection satisfying the conditions:

. if f(z)t f(2) then z 1 o'

2. for everyy € 1 and everyx € o, ify f(x) theny = f(z') for some ' € .
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Then f is a stable embedding, i.e., there exists g : 1 — ¢ such that (f,g) is a stable
embedding-pro ection pair.

Proof: 1t is straightforward to check that f is an (order) isomorphism between ( and
fC o) € 1. Infact, if f(z) f(y) then f(z) 1 f(y) and so, by the first condition, z 1 y.
But then, by additivity, f(x y) = f(z) f(y) = f(y) and thus, by injectivity, z y =,
ie, r y. Moreover, f( ) is a strong ideal of 1, and so the result can be obtained
by using roposition 3.3.1. Indeed, the pair (i, ): f( o) = 1isa SE , and moreover
(f,f Y: o= f( o) isalsoa SE (in fact, an isomorphism). So, their composition
(i f,f ' )isaSE (note that the embedding is really i f = f). O

The following proposition explains the structure of ideal completions which are strong
ideals in a Scott domain.

Pro osition 3.3.2 ( ee [B 93] Pro osition 2.2. ) Let  be a consistently com-
plete poset with minimum, and X be a non-empty subset of P such that:

. X is downward-closed
2. ifr,ye X and x Ty, thenx ye€ X.
The domain dI(X) is a strong ideal of dI(P). O

There is a special property concerning strong ideals of dI-domains, which was stated in
[BCS93], and is an adaptation of the proof of roposition 2.3.7 in Curien [Cur86].

Pro erty 3. .1 Let be a d -domain, and X a strong ideal of . Then X, with the in-
herited ordering, is also a d -domain, whose compact elements are precisely those compact
elements of  which are contained in X.

Proof: We already know from roperty 3.3.2 that X is a Scott domain and X° = °NX;
so the domain is also finitary. Distributivity is straightforward. O

In a Scott domain , an element d is a complete prime if and only if, for every
compatible set X C it holds that

d X = JdJreX.d =z

The set of complete primes is denoted by r( ). We say that is prime algebraic iff
x = (z) holds for each z € , where

(x)={de x( ):d =z}

The following theorem gives a precise relation between prime algebraicity and distributiv-
ity in finitary Scott domains:

Theorem 3. .1 ( ins el [ in ]) Let be a finitary cott domain. Then  is dis-
tributive (i.e., a d -domain) iff it is prime algebraic. O
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iven a cpo , an atom is any element d €  such that 1 -d. The set of atoms is
denoted by , and, for every z € , we let () =l zn . A Scott domain s
atomic iff () = z for every x € . Here is an interesting property of the atoms in a
Scott domain:

Lemma 3. .1 Let be a cott domain.
very atom of  is compact, i.e., c °

2. 4f  is an atomic d -domain, then for every compatible set of atoms A one has

(A=A

Proof: For the first part, if z € was not compact, since z = (z), we would have
(z) = {L} and thus z = L, contradicting the fact that = is an atom.

For the second part, the right-to-left inclusion is obvious, so we only have to prove the

following statement: if ¢ is an atom and a A then a € A.

We first prove this in the case of finite A. Suppose by contradiction that a € A: one has
a ( A)=a (because a A) but, by distributivity (A being finite)

a (A= {a z,0eA}=1

because a =1 foralla, € ,a# . Sowehavea= 1, contradicting a €

For the infinite case, let = { B : B C A finite}; this is clearly a directed set, and
= A.Soa ; but @ is an atom, and so a B for some finite B C A. Using the

finite-case part, we so have a € B C A. O

Atomic dI-domains are also known as qualitative domains, since the work of irard
[ ir86] who first gave a nice and simple representation theory for them, which we shall
sketch in some detail in Chapter 4.

An important property concerning the relation between atomicity and stable E s is

the following:

Lemma 3. .2 Let(f,g): o — 1 be a stable embedding-pro ection pair. [z is an atom
of o, then f(x) is an atom of 1.

Proof: First remember that f is injective and strict (by roperty 3.3.1); so f(z) # 11
(because z is an atom, and so it is different from L1y). Now, suppose L1 y  f(x);

since g is monotone, g(11) = Lo = ¢(y) ¢(f(z)) = z. But then, since z is an atom,
1lo=g(y)org(y) ==x. Sincey  f(z), we have y = f(g(y)) and so either f(Ly) = L1 =y
ory = f(x). O

It is worth mentioning that atomic dI-domains have the special property of being
locally isomorphic to complete boolean algebras, as stated in the following

Pro erty 3. .2 Let be an atomic d -domain. or every x € , the set | x (with the
induced ordering) is a complete boolean algebra.

Proof: The fact that | x is a complete lattice is ensured by the consistent completeness
of , and by the observation that | = is upper bounded by z. Also, distributivity follows
from the distributivity of . For complements, let y €] x and define A = (y) and
B= (z) (). Observe that A =y, and let 3’ be defined as B. We have:
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ey ¥=( @) (( (= ) = (z) = =;
oy o = (y)) (( (= (y))) which gives, by distributivity, y ¢’ =
{a ::a€e (y), € (2 (y)}. But clearly the greatest lower bounds of
two different atoms is always the bottom, and soy 3’ = L.

So v’ is the complement of y. O



Chapter

O €6 n er a con tr ct on

In this chapter, we study the structure of tolerance spaces with the tools of universal
algebra; to this end, we shall consider the category of (countable) tolerance spaces, with
embeddings as morphisms. It is well-known, since ado [ ad67], that this category (which
is equivalent to the category of undirected graphs with rigid embeddings) contains a uni-
versal homogeneous object. We shall show that this category is equivalent to that of
atomic coherent dI-domains (with stable embedding-projection pairs as objects, see Berry
[Ber79]), and obtain as a consequence a universal homogeneous object for this category
also.

ado’s very direct construction can be generalized, as to obtain universal homogen-

eous objects for other categories of representations. If one considers irard’s qualitative
domains [ ir86], which are quite a natural generalization of tolerance spaces, it is rather
easy to construct a universal homogeneous object, which is built much in the same way as
ado’s graph. We shall prove that this category is equivalent to that of atomic dI-domain,
and thus obtain a very direct construction of a universal homogeneous domain of this kind.

It is immediate to observe that these constructions can be further generalized consider-
ing structures with a notion of causality (enabling), like event structures [Win80, N W81]:
clearly, tolerance spaces (qualitative domains) are very simple cases of prime event struc-
tures (general event structures, respectively), where the enabling relation is trivial. We
shall further generalize our constructions, and obtain a very direct definition for the univer-
sal homogeneous stable event structure. Unfortunately, in this case we have no categorical
equivalence with the corresponding category of domains (i.e., the dI-domains). So, only a
universal domain can be obtained in this way, but homogeneity cannot be insured.

We shall also provide an alternative construction for a universal homogeneous dlI-
domain, presented in [BCS93], based on the notion of Mazurkiewicz’s trace, and still
using ado’s graph as starting point.

The work contained in this chapter can be interpreted in two ways: on one side, we
wish to show how tolerance spaces are a special case of very well-known representations;
on the other, we prove that their universal structure is especially well-behaved.

45
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In the theory of denotational semantics of programming languages and concurrency, many
authors have established the (in)existence of particular kinds of universal domains. The
pioneering work of Scott [Sco76], which provided a universal w-algebraic lattice, has been
followed by more research in the same direction, especially by lotkin [ 1078] and unter
[ un87]. Droste hilighted the importance of having homogeneous universal objects for
categories of domains, and obtained many results in this direction, using classical theorems
of model theory [D 93]; he also did much work in the field of relating universal domains
with their universal representations, mainly with event structures [Dro91] and ahn and
lotkin’s concrete data structures (see also [ 78]).

We firstly give a general, categorical introduction to universality, and express some
results which we shall use in the following. et be a category where all arrows are
monic, and  be a full subcategory of . An object U € Obj( ) is

iff for every object A € Obj( ) there is an arrow f : A — U; for ex-
ample, in the case that represents a preordered set, a  -universal object represents
an upper bound of ;

iff for any A € Obj( ) and for any two arrows f,g: A — U there
exists an automorphism of U (i.e., an arrow : U — U which is an isomorphism
of ) such that g = f; in other words, every time that an object of  can be
“mapped” into U using two arrows, these arrows just differ for the composition with
an automorphism of U;

iff for any A,B € Obj( ) and for any two arrows f : A — U and
g : A — B there is an arrow : B — U such that g = f; this can be interpreted
as follows: if an object A of  can be mapped to U via f, and if it can also be
mapped to some other object B, then f can be naturally extended to a map from
BtoU.

We are especially interested in the case when is an algebroidal category (since all cat-
egories of representations are such) and  is the subcategory of all finite objects. For con-
venience of the reader, we recall here the basic definitions; a category is

if every w-chain of finite objects has a colimit, and moreover every object is the colimit of
an w-chain of finite objects. It is if it is semi-algebroidal, the subcategory of
finite objects has a countable skeleton, and for any two objects A, B the set Hom(A, B)
is countable.

We then have the following important result, which is proved in [D 93]:

Theorem 21 ( rosteand o el[ 93]) L , U
! fi ;
q
.U f
2.U f



n ntrod ctonto n ersalt 47

U
f U














































































r r
/’\)\_ a’N’\
p — p
b
[ ]
S

SN <>








































































































































Axiom (A1)

Axiom (A2)



= x =3 72— —x 3 By 1 2]
=y = N w w3

Axiom (A1) Axiom (A2)




S B N W

m

T

[ =}

[ BN}

m

[ BN}

m

[ BN}

fl(x)




































(@

(b)


































































