
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Scattered notes from today’s lesson (Oct 26, 2022

PAOLO BOLDI

ACM Reference Format:
Paolo Boldi. 2018. Scattered notes from today’s lesson (Oct 26, 2022. J. ACM 37, 4, Article 111 (August 2018), 2 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 ABOUT PTAS FOR 2-LOADBALANCING

We are hereby considering the problem of assigning tasks to two machines so that the assignment load is minimized.
More formally, given a set of tasks𝑇 , each with a prescribed duration 𝑡𝑖 (for 𝑖 ∈ 𝑇 ), we want to divide𝑇 into two subsets,
say 𝑇1 ⊆ 𝑇 and 𝑇2 = 𝑇 \𝑇1, so that 𝐿 = max(𝐿1, 𝐿2) = max(∑𝑖∈𝑇1 𝑡𝑖 ,

∑
𝑖∈𝑇2 𝑡𝑖 ) is minimized. The pair (𝑇1,𝑇2) will be

referred to as an assignment, 𝐿𝑖 is the load of machine 𝑖 under the assignment, and 𝐿 is the assignment load.

Theorem 1.1. Given an optimal assignment for the set for tasks 𝑋 with assignment load 𝐿∗, if we further assign a new

task 𝚤 ∈ 𝑇 \ 𝑋 and the resulting assignment has still load 𝐿∗, then the new assignment is optimal for 𝑇 ∪ {𝚤}.

Proof. Let (𝑋 ∗
1 , 𝑋

∗
2 ) be an optimal assignment for 𝑋 , and let 𝐿∗ be the assignment load. Now, we assign the new

task 𝚤 to either machine, obtaining a new assignment (𝑋1, 𝑋2) still with load 𝐿∗. Assume by contradiction that this
assignment is not optimal. This means that there exists another assignment (𝑋 ′

1, 𝑋
′
2) for the set 𝑋 ∪ {𝚤} such that the

assignment load of (𝑋 ′
1, 𝑋

′
2) is smaller than 𝐿∗. This means

max(
∑
𝑖∈𝑋 ′

1

𝑡𝑖 ,
∑
𝑖∈𝑋 ′

2

𝑡𝑖 ) < 𝐿∗ .

Removing from 𝑋 ′
1 or 𝑋 ′

2 the new task 𝚤, we obtain an assignment (𝑋 ′′
1 , 𝑋 ′′

2 ) for the set 𝑋 and

max(
∑
𝑖∈𝑋 ′′

1

𝑡𝑖 ,
∑
𝑖∈𝑋 ′′

2

𝑡𝑖 ) ≤ max(
∑
𝑖∈𝑋 ′

1

𝑡𝑖 ,
∑
𝑖∈𝑋 ′

2

𝑡𝑖 ) < 𝐿∗,

contradicting the fact that (𝑋1, 𝑋2) was optimal for 𝑋 . □

Corollary 1.2. Assume that in one execution of the PTAS the machine with the largest load at the end is the first

machine; if after the first 𝑘 tasks (that are assigned in an optimal way by exhaustive search) all the remaining ones are

assigned to the second machine, then the final solution is optimal.

Proof. Theorem 1.1 says that starting from an optimal solution and assigning a new task, the new assignment
remains optimal as long as the load does not change. After assigning the first 𝑘 task the solution is optimal by design,
and the first machine is the one with the largest load (otherwise, since the last tasks are all assigned to the second, the

Author’s address: Paolo Boldi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Paolo Boldi

second would be the most loaded also at the end). If we keep assigning the remaining 𝑛 −𝑘 tasks to the second machine,
it is because at all steps this machine is the less loaded. This is also true also at the very end (after assigning the very
last task) by the hypothesis in the statement of the theorem. Hence, the load never changes during the greedy phase,
and so the final solution is also optimal. □

2 OTHER NOTES

• The fact that 𝑃 = 𝑁𝑃 iff 𝑃𝑂 = 𝑁𝑃𝑂 is proven in Theorem 6.2 of Introduction to the theory of complexity by Daniel
Pierre Bovet and Pierluigi Crescenzi (see course webpage). The difficult part is of course proving that 𝑃 = 𝑁𝑃

implies 𝑃𝑂 = 𝑁𝑃𝑂 . Under the hypothesis that 𝑃 = 𝑁𝑃 , consider a problem Π ∈ 𝑁𝑃𝑂 (for simplicity, assume it is
a maximization problem); its associated decision problem Π̂ is (by definition) in 𝑁𝑃 , hence in 𝑃 . So for any given
input 𝑥 ∈ 𝐼Π and bound 𝑘 , it is decidable (in polynomial time) whether 𝑥 has an admissible solution 𝑦 with cost
≥ 𝑘 . With a binary search we can thus find the cost of the optimal solution 𝑦∗ (𝑥). The (nontrivial) fact that from
the cost of the optimal solution one can derive the actual optimal solution is a technical part of the proof that is
based on the concept of prefix optimization problem (see Theorem 6.1 of the reference above).

Manuscript submitted to ACM


	1 About PTAS for 2-LoadBalancing
	2 Other notes

