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Plan of the talk

• Computing distances in large graphs (using 
HyperANF)

• Running HyperANF on Facebook (the largest 
Milgram-like experiment ever performed)

• Other uses of distances (in particular: robustness)



Prelude
Milgram’s experiment is 45
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Where it all started...

• M. Kochen, I. de Sola Pool: Contacts and influences. 
(Manuscript, early 50s)

• A. Rapoport, W.J. Horvath: A study of a large 
sociogram. (Behav.Sci. 1961)

• S. Milgram, An experimental study of the sma$ world 
problem. (Sociometry, 1969)
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Milgram’s experiment

• 300 people (starting population) are asked to 
dispatch a parcel to a single individual (target)

• The target was a Boston stockbroker

• The starting population is selected as follows:

• 100 were random Boston inhabitants (group A)

• 100 were random Nebraska strockbrokers (group B)

• 100 were random Nebraska inhabitants (group C)
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Milgram’s experiment 

• Rules of the game:

• parcels could be directly sent only to someone 
the sender knows personally

• 453 intermediaries happened to be involved in 
the experiments (besides the starting 
population and the target)
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• Questions Milgram wanted to answer:

• How many parcels will reach the target?

• What is the distribution of the number of hops 
required to reach the target?

• Is this distribution different for the three 
starting subpopulations?
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Milgram’s experiment

• Answers:

• How many parcels will reach the target? 29%

• What is the distribution of the number of hops 
required to reach the target? Avg. was 5.2

• Is this distribution different for the three starting 
subpopulations? Yes: avg. for groups A/B/C was 
4.6/5.4/5.7, respectively



Chain lengths



Milgram’s popularity



Milgram’s popularity

• Six degrees of separation slipped away from the 
scientific niche to enter the world of popular 
immagination:



Milgram’s popularity

• Six degrees of separation slipped away from the 
scientific niche to enter the world of popular 
immagination:

• “Six degrees of separation” is a play by John 
Guare...



Milgram’s popularity

• Six degrees of separation slipped away from the 
scientific niche to enter the world of popular 
immagination:

• “Six degrees of separation” is a play by John 
Guare...

• ...a movie by Fred Schepisi...



Milgram’s popularity

• Six degrees of separation slipped away from the 
scientific niche to enter the world of popular 
immagination:

• “Six degrees of separation” is a play by John 
Guare...

• ...a movie by Fred Schepisi...

• ...a song  sung by dolls in their national costume 
at Disneyland in a heart-warming exhibition 
celebrating the connectedness of people all 
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Milgram’s criticisms

• “Could it be a big world after all? (The six-
degrees-of-separation myth)” (Judith S. Kleinfeld, 
2002)

• The vast majority of chains were never 
completed

• Extremely difficult to reproduce
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Measuring what?

• But what did Milgram’s experiment reveal, after 
all?

i) That the world is small

ii)That people are able to exploit this smallness



HyperANF
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Introduction

• You want to study the properties of a huge graph 
(typically: a social network)

• You want to obtain some information about its global 
structure (not simply triangle-counting/degree 
distribution/etc.)

• A natural candidate: distance distribution 
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Graph distances and 
distribution

• Given a graph, d(x,y) is the length of the shortest 
path from x to y (∞ if one cannot go from x to y)

• For undirected graphs, d(x,y)=d(y,x)

• For every t, count the number of pairs (x,y) such 
that d(x,y)=t

• The fraction of pairs at distance t is (the density 
function of) a distribution
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Exact computation

• How can one compute the distance distribution?

• Weighted graphs: Dijkstra (single-source: O(n2)), 
Floyd-Warshall (all-pairs: O(n3)) 

• In the unweighted case: 

• a single BFS solves the single-source version of 
the problem: O(m)

• if we repeat it from every source: O(nm)
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Sampling pairs

• Sample at random pairs of nodes (x,y)

• Compute d(x,y) with a BFS from x

• (Possibly: reject the pair if d(x,y) is infinite)
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Sampling pairs

• For every t, the fraction of sampled pairs that 
were found at distance t are an estimator of the 
value of the probability mass function

• Takes a BFS for every pair O(m)
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Sampling sources

• Sample at random a source x

• Compute a full BFS from x
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Sampling sources

• It is an unbiased estimator only for undirected and 
connected graphs

• Uses anyway BFS...

• ...not cache friendly

• ...not compression friendly
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Cohen’s sampling

• Edith Cohen [JCSS 1997] came out with a very 
general framework for size estimation: powerful, 
but doesn’t scale well, it is not easily parallelizable, 
requires direct access
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Alternative: Diffusion

• Basic idea: Palmer et. al, KDD ’02

• Let Bt(x) be the ball of radius t about x (the set of 
nodes at distance ≤t from x)

• Clearly B0(x)={x}

• Moreover Bt+1(x)=∪x→yBt(y)∪{x}

• So computing Bt+1 starting from Bt one just need a 
single (sequential) scan of the graph
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Easy but costly

• Every set requires O(n) bits, hence O(n2) bits 
overall

• Too many!

• What about using approximated sets?

• We need probabilistic counters, with just two 
primitives: add and size?

• Very small!
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HyperANF

• We used HyperLogLog counters [Flajolet et al., 
2007]

• With 40 bits you can count up to 4 billion with a 
standard deviation of 6%

• Remember: one set per node! 
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Observe that

• Every single counter has a guaranteed relative 
standard deviation (depending only on the number 
of registers per counter)

• This implies a guarantee on the summation of the 
counters

• This gives in turn precision bounds on the 
estimated distribution with respect to the real one
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Other tricks

• We use broadword programming to compute efficiently 
unions

• Systolic computation for on-demand updates of 
counters

• Exploited micropara$elization of multicore 
architectures
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Real speed?

• Small dimension: 1.8min vs. 4.6h on a graph with 
7.4M nodes

• Large dimension: HADI [Kang et al., 2010] is a 
Hadoop-conscious implementation of ANF. Takes 30 
minutes on a 200K-node graph (on one of the 50 
world largest supercomputers). HyperANF does the 
same in 2.25min on our workstation (20 min on this 
laptop).



Running it on Facebook!
[with Lars Backstrom and Johan Ugander]



Facebook



Facebook

• Facebook opened up to non-college students on 
September 26, 2006



Facebook

• Facebook opened up to non-college students on 
September 26, 2006

• So, between 1 Jan 2007 and 1 Jan 2008 the number 
of users exploded



Experiments (time)

• We ran our experiments on snapshots of facebook 

• Jan 1, 2007 

• Jan 1, 2008 ... 

• Jan 1, 2011

• [current] May, 2011 



Experiments (dataset)

• We considered:

• -: the whole facebook 

• it / se: only Italian / Swedish users

• it+se: only Italian & Swedish users

• us: only US users

• Based on users’ current geo-IP location



Active users

• We only considered active users (users who have 
done some activity in the 28 days preceding 9 Jun 
2011)

• So we are not considering “old” users that are not 
active any more

• For - [current] we have about 750M nodes
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$ (current): 92% pairs 
are reachable!



Effective diameter (@ 90%)
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Harmonic diameter

2008 curr

it 23.7 3.4
se 4.5 4.0
it

+se 5.8 3.8
us 4.6 4.4
$ 5.7 4.6

0
5

10
15

20
25

30

harmonic diameters

year

ha
rm

on
ic

 d
ia

m
.

2008 2009 2010 2011

*
*
*
*
*

it
se
itse
us
fb

●

●

● ●

●
●

●

●

●

●

●
●

● ●
●

●

●

●
● ●



Average degree vs. density ($)

Avg. degree Density

2009

2010

2011

curr

88.7 6.4 * 10-7

113.0 3.4 * 10-7

169.0 3.0 * 10-7

190.4 2.6 * 10-7



Actual diameter 
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>29 =25
>16 =25
>21 =27
>17 =30
>16 >58



Actual diameter 

2008 curr
it
se

it+se
us
)

>29 =25
>16 =25
>21 =27
>17 =30
>16 >58

Used the fringe/double-sweep 
technique for “=”



Other applications
Spid, network robustness and more...
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What are distances good for?

• Network models are usually studied on the base of 
the local statistics they produce

• Not difficult to obtain models that behave correctly 
locally (i.e., as far as degree distribution, assortativity, 
clustering coefficients... are concerned)



Global = more informative!
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An application

• An application: use the distance distribution as a 
graph digest

• Typical example: if I modify the graph with a 
certain criterion, how much does the distance 
distribution change?
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Node elimination

• Consider a certain ordering of the vertices of a graph

• Fix a threshold ϑ, delete all vertices (and all 
incident arcs) in the specified order, until ϑm arcs 
have been deleted

• Compute the “difference” between the graph you 
obtained and the original one



Experiment
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Experiment (cont.)
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Removal strategies 
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Removal in social networks
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Findings

• Depth-order, PR etc. are strongly disruptive on 
web graphs

• Proper social networks are much more robust, still 
being similar to web graphs under many respects



Another application: Spid



Another application: Spid

• We propose to use spid (shortest-paths index of 
dispersion), the ratio between variance and average in 
the distance distribution



Another application: Spid

• We propose to use spid (shortest-paths index of 
dispersion), the ratio between variance and average in 
the distance distribution

• When the dispersion index is <1, the distribution is 
subdispersed; >1, is superdispersed



Another application: Spid

• We propose to use spid (shortest-paths index of 
dispersion), the ratio between variance and average in 
the distance distribution

• When the dispersion index is <1, the distribution is 
subdispersed; >1, is superdispersed

• Web graphs and social networks are different under 
this viewpoint!



Spid plot
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Spid conjecture

• We conjecture that spid is able to tell social 
networks from web graphs

• Averag distance alone would not suffice: it is very 
changeable and depends on the scale

• Spid, instead, seems to have a clear cutpoint at 1

• What is Facebook spid? [Answer: 0.093]



Average distance∝ Effective diameter
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