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Chapter 1

Preface

1.1 Structure of the thesis

For convenience of the reader, we start with a general overview of the content of this
thesis.

In Chapter 2, we motivate the notion of tolerance space by using some examples coming
from the theory of computation, measurement, aynchronous circuit design and from the
relativistic theory of time (with applications to concurrency theory).

After introducing some definitions and theorems from domain theory (Chapter 3), we
discuss at a certain depth the role of tolerance spaces (and their generalizations) for ob-
taining results in the theory of domains, with applications to the construction of universal
domains and to the solution of recursive domain equations (Chapter 4). In this context,
we present some generalizations of Rado’s theorem about the existence of a universal
tolerance space (Section 4.3), and give, in Section 4.4, some hints about how these con-
structions lead directly to the possibility of solving recursive domain equations by using
suitable number-theoretical encodings. We also consider two alternative universal con-
structions, one based on trace automata and prime event structures (Section 4.5), and one
of probabilistic flavour (Section 4.6).

In Chapter 5, we see how one could endow a tolerance space with a further topological
structure, and use this fact to obtain finitary approximations of complex topological spaces.

Finally, Chapter 6 takes into thorough consideration those tolerance spaces which
could be adopted for representing results of measurements, concentrating on those asso-
ciated with strongly noetherian semiorders, and obtaining some simple characterizations
of tolerance properties in terms of the structure of maximal chains and antichains in the
associated semiorder.

In the Appendix, we recall the basic notions of category theory, measurement theory
and general topology which the reader should possess in order to understand the contents
of this thesis.

Most results presented in Chapter 3 are standard, except some which were published in
[BCS93]. The material of Chapter 4 is mostly new, except for Session 4.5, which appeared
in [BCS93]. Some of the results presented in Chapter 5 were part of [Bol95]. Most of the
content of Chapter 6 already appeared in [Bol96].

Here follows the precedence diagram of the thesis.
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6 Preface

1.2 Notations, conventions and terminology

In the sequel, we shall freely use some very standard notations and conventions. Here is
a table of some less common notations; some more are introduced in the Appendix.

Notation Meaning

ACqn B A is a finite subset of B

ACB A is a proper subset of B

AC¢ the complement of A

A\ B A minus B (set-theoretic difference)

[Licr Ai the cartesian product of the family A;

p(A) the powerset of A (i.e., the set of all subsets of A)
©fin(A) the set of all finite subsets of A

fog the function compositionof g: A - B and f: B = C

z Ry the pair (z,y) belongs to the relation R (i.e., (z,y) € R)
RoT the composition of two relations RC Ax Band TC B xC

¢ <= Y, P iff ¢ ¢ if and only if 1)

¢ N (P V1, —¢) ¢andy (¢ or ¢, not ¢)

N,Z,QR the sets of natural, integer, rational, real numbers, resp.
w the set of natural numbers; the first infinite ordinal

In order not to puzzle the reader, a short warning about the terminology used in this
thesis is needed. In the following, we shall mainly be concerned with tolerance spaces, and
with their applications to domain theory, approximation theory and measurement. As a
matter of fact, from a definitional point of view, a tolerance space is nothing more than
a reflexive (possibly infinite) graph, and we could have chosen to use the standard graph-
theoretical terminology to speak about its properties. Nevertheless, we feel that the idea of
tolerance space has a peculiar significance of its own which should be always emphasized,
if only because of the way in which the adjacency (tolerance) relation is generated.

For this reason, we have decided to adopt a completely tolerance-theoretic nomen-
clature, and to adhere to this general principle throughout the whole thesis, with few
exceptions. Much for the same reasons, we have decided to use a domain-theoretical ter-
minology which fits our needs, thus discarding some of the possible (sometimes, widely
diffused) alternatives.
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We give here a brief list of the alternative names the reader may find in the literature,
which will be anyway mentioned in the text whenever introducing a new concept.

Name adopted here Possible alternatives

tolerance space [Zee62] (undirected reflexive) graph
tolerance-continuous function graph morphism
(tolerance space) embedding  graph embedding

indifference chain path in a graph

atomic coherent dI-domain coherence space [Gir87]
atomic dI-domain qualitative domain [Gir86]
line (cut) [Pet96] maximal (anti)chain
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Chapter 2

Introduction: tolerance and
approximation

Concurrency is a basic computational phenomenon occurring in spatially distributed sys-
tems in which communication between components takes a non-negligible time.! Its study
has gained much impetus from the insight that the processes of such systems can be ana-
lyzed as sets of events (or, better, event occurrences) with an order relation on them
reflecting the order in which such events may become enabled in a run of the system.?
Two events are concurrent exactly when they are incomparable in this ordering, meaning
in particular that none of them is enabled by the other (early instances of this view can
be found in Holt et al. [HT68] and Patil [Pat70]).

The source of this basic insight can in fact be traced back to the work of Carl Adam
Petri [Pet62, Pet82a, Pet77] who later (see for example [Pet79, Pet80a, Pet82b, Pet87,
PS87]) developed an axiomatic theory of concurrency inspired by earlier axiomatizations of
relativistic physics (as summarized, for example, in Carnap [Car58]). The basic framework
for studying the concurrency relation is a structure

(X, co) (2.1)

for an arbitrary set X # () with a reflexive, symmetric binary relation co over X. This
is what in the present work will be called a tolerance space, co being a tolerance relation,
following the terminology introduced by Zeeman [Zee62].

Of course this axiomatic development favors the comparison of properties of concur-
rency with those of formally similar structures arising in apparently unrelated areas. We
shall now comment briefly on some of these connections and pointers to the relevant lit-
erature, leaving to later sections a closer study of some of them.

Petri himself (in Petri [Pet80a]) explicitly observed the close link between axioms for
structures of the form (2.1) and properties of the relation of indifference which arises
in ordinal measurement of utility. This can be extended to an interpretation in which

'This is the definition of a distributed system given, for example, in Lamport [Lam78]. Observe that
any system is distributed in this sense, when looked at sufficiently closely.

2This is usually called causal order in the literature, although it represents the same kind of relation
which exists between cocking the hammer of a gun and pulling the trigger, which can hardly be counted
as one of cause and effect.
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X is a set of samples to be measured by some device M. Then zcoy if z and y are
indistinguishable by means of M. It was Luce [Luch6], on the basis of previous works
in economics [Arm39] and philosophy [Goo77], who supported the claim that indifference
should be regarded as a tolerance relation, formalized as incomparability in partial orders
of a well-behaved class. These are the semiorders which, by results of Scott and Suppes
[SS58], can be represented as the orderings arising when the measuring device outputs for
each sample a real value within a degree of precision limited by a threshold depending on
the device only.3

Intransitive relations of similarity appear quite naturally in the analysis of what Poin-
caré [Poi03] called empirical continua. Indeed, the existence of sensory thresholds (or of
physical limitations on measuring devices) suggests that density properties of orderings
arising from the classification of perceptual data be replaced by just such a relation.*
Poincaré even turned the main consequence of these limitations into a definition, which is
also taken to be a fundamental property of concurrency in Petri [Pet80al):

On a observé, par exemple, qu'un poids A de 10 grammes et un poids B de
11 grammes produisaient des sensations identiques, que le poids B ne pouvait
non plus étre discerné d’un poids C de 12 grammes, mais que 1'on distinguait
facilement le poids A du poids C. Les résultats bruts de ’expérience peuvent
donc s’exprimer per les relations suivantes:

A=B,B=C,A<C

qui peuvent étre regardées comme la formule du continu physique. [ ... ]
Un systéme d’éléments formera un continu, si 'on peut passer d’un quel-
conque d’entre eux a un autre également quelconque, par une série d’éléments
consécutifs tels que chacun d’eux ne puisse se discerner du précédent. Cette
série linéaire est & la ligne du matématicien ce qu’un élément isolé était au
point. (ibidem, pages 34-35 and 45; English translation pages 22 and 31)

This line of thought has been further pursued by Zeeman [Zee62, ZB70] motivated by
applications to biology and physics, and by Poston [Pos71], who reconstructs a substantial
amount of results from higher mathematics replacing topological notions by their finitistic
analogues in the context of tolerance spaces of the kind (2.1).

A different connection appears when X is taken to be the collection of convex sets
(intervals) of an ordered set; in this case co may be interpreted as overlapping of intervals,
and further axioms may be imposed depending on the order-theoretical and topological
properties of the underlying ordered set. This interpretation originated with Whitehead’s
method of “extensive abstraction” (see Wiener [Wiel4, Wiel6] for early applications),
and is especially relevant to what has come to be known as “pointless topology,” in which
the points of a topological space are not primitive entities but rather are constructed
as suitable collections of open sets. On the one hand, this view conforms to the fact

3In Chapter 6 of the present work we take up the analysis of a special class of semiorders which is of
interest both in measurement and in the theory of concurrent systems.

41t should be observed that limitations in this case have a positive counterpart which appears when we
realize that the very existence of a practice of measurement in everyday life is closely dependent on the
fact that, for example, sameness of weight is a tolerance relation which is not an equivalence—otherwise
we should be able to communicate real numbers with infinite precision.
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that the infinite precision in measurement needed to exhibit a point can be obtained
only in the limit. In one such approach, for example, points are identified with maximal
sets of pairwise overlapping elements of X, as in the theory developed by Wallman and
summarized in Menger [Men40]. On the other hand, it has recently turned out that
the uniform application of this standpoint allows to prove constructively results which
classically need some form of the axiom of choice (for an example, see Coquand [Coq91,
Coq92]).

On the logical side, the elements of X can be considered as atomic propositions, co
describing a relation of compatibility or consistency between propositions. It is natural in
this context to take sets of pairwise compatible propositions as (partial) elements of some
kind of Scott domain.® The idea is due to Girard and is developed in Girard, Lafont and
Taylor [GLT89]. For example, the domain of “lazy natural numbers” which is of interest
for the denotational semantics of lazy functional programming languages and whose Hasse
diagram has the shape:

00

is easily seen to be described by the set of propositions:
X={n|newlU{n |necw}
with consistency given by the (symmetric closure of the) pairs:
- (m,n) for m = n,
- (mT,n) if m <n,
- (m*,n*) for all m,n.

It is thus possible also in this case to connect the idea of a tolerance space, in this last
interpretation, to the idea of partial element approximating a total one which underlies
much of Scott’s work in domain theory (see especially Scott [Sco70]). This is a different
way of relating domains and concurrency from that which motivated the introduction
of event structures and related classes of partial orders (Nielsen, Plotkin and Winskel
[NPWS81], Winskel [Win80]).

This interpretation will be explored thoroughly in Chapters 3 and 4 of the present work.
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2.1 Approximation and equivalence: a computational view-
point

The need for approximation is commonly determined by the impossibility (or the diffi-
culty) of achieving (deciding) equivalence between objects. For example, in the practice
of measurement, we say that a certain metal rod is approzimately 1 meter long meaning
either that we have no means for deciding whether its length is ezactly 1 meter (since the
measuring instruments at our disposal are not precise enough to make a non-approximated
judgement), or because in any case an exact measurement would be too expensive, or even
useless, in the given context.

Impossibility of achieving equivalence is sometimes determined by some limitations in
the availability of resources, but sometimes it is intrinsic in the problem we are considering.
In this section, we shall begin presenting some computational problems in which these
situations take place, and show how the difficulties arising may be well explained in the
context of observability.

We describe now a simple Gedankenezperiment which provides an example of a situ-
ation in which exact judgements about an equivalence relation require an unbounded
amount of effort (in this case, computational effort).

Consider a set A C w of natural numbers; clearly, this induces an equivalence relation
on w defined by

z~yifandonly if (z € A < y € A).

In other words, two numbers are equivalent iff they are both contained in A, or both
contained in its complement. This equivalence relation has exactly two equivalence classes,
A and A® (the complement of A). Naturally, there is a direct relation between decidability
of A and that of ~: more precisely, ~ is decidable if and only if A is recursive.

In fact, suppose that A is recursive, and let M be a deterministic Turing acceptor which
decides the membership problem for A; in other words, M is a machine which terminates
for every input in one of two possible states YES or NO, and M(z) = YES if and only
if z € A. Now, to decide whether z ~ y or not, simply run M on z and y, and answer
“YES” if and only if M gives the same answer on both inputs (i.e., M (z) = M(y)).

The problem here is that, in general, we do not know in advance how long it will take
for the machine M to give an answer: we only know that the machine will eventually
halt, but the number of steps is in general unbounded. Suppose that we need to take
some decision (possibly: an approximate one) within a fixed number ¢ of steps, using the
machine M. What should we do? We could run M, and hope that it halts on the given
input within t steps: if we are lucky enough, the machine will stop within the required
bound, and we have the answer we needed. But, what if the machine has not yet ended
its computation after the ¢-th step? The only thing we can do is to output some kind of
“don’t know” answer, expressing the fact that M has not been able to compute an answer
to the problem in that fixed amount of time.

In other words, we build a new machine M; which acts as follows:

My(z) = M(z) if M halts within ¢ steps on input z
BT HK otherwise.
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Figure 2.1: Partition induced by M,

The machine M; actually uses at most ¢ steps, but it sometimes gives a “don’t know”
answer (represented by HK, i.e., “Heaven Knows”); note that M; is not an acceptor.
Rather, it classifies the set of inputs w into three disjoint subsets YES;, NO; and HKj,
where YES; C A, NO; C A® and HK, is the set of all instances for which no solution
(acceptance or rejection) was found within ¢ steps; the situation is sketched in Fig. 2.1.

In a sense, M, is a degraded version of M, and it “recognizes” an approximated version
of the set A. It is natural to ask what kind of “equivalence” relation could be induced
by using M, instead of M. What we want to have is a kind of approximation of ~, but
how could we define it? Clearly, if M; gives an exact answer for both inputs (i.e., if it
outputs a YES or a NO), then we can decide ~ on those inputs in an exact way. But what
shall we do if we get a “don’t know” answer for one (or both) inputs? We may want to
decide in some random way (for example, by tossing a coin), but we prefer to do this in a
deterministic manner.

Of course, whatever protocol we choose, it shall be prone to error: the only thing we
can do is to decide if we want to have a surplus of “YES” or of “NO” answers. Our choice
will be to make a judgement which is never wrong when it answers “NO”, but may be
wrong when it answer “YES”®. In practice, we can define a relation ~; by putting

z ~y y if and only if My(z) = M(y) or M;(z) = HK or M;(y) = HK.

In other words, we answer “YES” whenever there is some chance that “YES” is the right
answer, while answering “NO” only if we are sure that “NO” is correct.

Now, what kind of relation is ~;7 It is certainly reflexive and symmetric, but it is not
transitive; in fact, suppose that z is accepted within ¢ steps, z is rejected within ¢ steps,
and y is neither accepted nor rejected during that period. As far as we know, z could be
equivalent to y, and likewise y could be equivalent to z, but z is certainly not equivalent
to z: i.e., z ~yy and y ~; z but z &4 2.

5This is in accordance with what happens in measuring: if we are to compare, for instance, two objects
by means of an arm balance, we can safely consider the objects to have different weights whenever this is
the response of the scale, but when the arms are in equilibrium, we are allowed to consider the objects
to be indistinguishable (as for weight) only inasfar we cannot use a more precise scale (thus putting more
“effort” in the decision).
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w

NH, YH,

HK

Figure 2.2: The topology €2; of observable properties

As a matter of fact, the graph of ~; is the dual of a complete bipartite graph with some
isolated node added: more precisely, we have the three cliques YES;, NO; and HK4, plus all
the arcs connecting elements of YES; to elements of HK;, and elements of HK; to elements
of NO;. Said otherwise, ~; is the complete relation minus (YES; x NO;) U (NO; x YES;).
Note that ~;D~yy1 and, moreover, Nyc, ~y=~, because YES; C YES;1;1 C A, NO; C
NO;; 1 € A® and HK; D HKyy1 (with N, HK; = 0).

Thus, ~¢ is not an equivalence relation, because it is not transitive, but it “approxim-
ates” an equivalence relation, in a sense which will be made precise in Chapter 5: relations
which are reflexive and symmetric, but not transitive, like ~;, are usually called “tolerance
relations” [Zee62]. What we want to discuss here is just that the problem of achieving
equivalence is related to the strong bound we have imposed on the resources (in this case:
time) we can use.

This problem can be clearly rephrased in terms of “observability”; what kind of prop-
erties can we observe at time t?7 If the word property is intended in its extensional sense
as a “set of objects” (a set of numbers, in this case), then the properties we can observe
are:

e the trivial properties () and w;

e the property of “possibly being in the set A”, which is represented by YH; = YES; U
HKt,

e the property of “possibly being out of the set A”, which is represented by NH; =
NO; U HK;.

This defines a topology of observable properties at t, say €2, and a base for the open sets
of ©; is given by {YH;, NH;}; the open sets of §; are represented in Fig. 2.2. (The idea
that observable properties form a topology is well-motivated and explained in [Smy92].)

Now, this clearly induces a topology on the limit, i.e., the topology € = Uy¢,, €2, whose
open sets are just those which are observable at some finite step. We can quotient the space
(w, ) by the relation ~, thus obtaining a topology €’ on the two-element set {4, A“}:
which topology do we obtain? Just observe that {A} is open if and only if {A} € Q; for
some t, i.e., if and only if M works in constant time, and in this case also {A®} € ©;. So,
the topology ' is either indescrete or discrete (i.e., the Sierpinski topology is ruled out).
Moreover, Q' is discrete if and only if M works in constant time.
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This idea of inducing a topology on the limit starting from topologies of finite observa-
tions, will be further pursued in Chapter 5, where we shall also prove that it can be used
to give finite approximations for uncountable topological spaces, like the Euclidean space.

In the above example, equivalence could actually be decided if we only imposed no
bounds on the response time. We shall now present a situation in which equivalence is
undecidable: there is no way to decide whether two objects are equal, not even using
unbouded resources. Once more, the problem here is closely related to the problem of
making finitely-decidable observations. The following example is borrowed from [Smy92],
with minor changes.

Consider a device which outputs an infinite binary sequence, one bit at a time: the
set of all possible outputs is thus {0,1}* (the set of all infinite sequences of bits). Each
such sequence x = (xg, z1, - ..) can be interpreted as the real number, denoted by z, whose
binary representation is .zgz1x2 . ... Thus, for example, the sequence (0,1,1,0,0,0,...) is
taken to represent the number 3/8.

An observer inspects the output sequence as it proceeds, noting various properties of it.
Since the device is a “black box”, his judgements can only be based on the finite segments
which have been output so far. A preliminary question is what kind of properties (i.e.,
subsets of {0,1}*) are observable?

Of course, a property is observable if and only if it can be observed within certain
(finite) time; in other words, the only basic observable properties are those of the form
w T where w is a finite binary string, and w 1 denotes the set of all infinite sequences
having w as prefix. For example, the property of “starting with a 0” is observable, while
the property of “containing finitely many 0’s” is not.

Notice that, if P and P’ are observable properties, then also P N P’ is such; moreover,
an arbitrary disjunction of observable properties is also observable’. Thus, the observable
properties form a topology Qgps on {0,1}¥, and {w 1: w € {0,1}*} is a base for this
topology.

Smyth [Smy92] discusses the topology Qgps in depth®; what we need, for our present
purpose, are just some very simple properties of this topology.

Suppose you possess two devices like that introduced above, each outputting some
(unknown) sequence; let x and y be the two sequences. We want to decide whether z =y
or not. Is this an observable property? Of course not. Even if, at a certain point, we
have observed the same finite prefix of both strings, we cannot say that the two (infinite)
sequences represent the same value (not even when they are actually “the same” sequence),
because we cannot stake claims on the future.

Yet, even though the problem z = ¥ is undecidable, we can still try to approximate its
solution, much in the same way as we did for ~ above. For example, we could say that
x = y if the two prefixes w = (z9,... ,z;) and v = (yo,... ,y:) observed at the t-th stage

"This is a simplification: the view that observable properties have the same closure properties as the
open sets of a topological space has been advocated by Abramsky in [Abr87]. For a criticism and sharpening
of this view, compare the discussion in [Smy92].

8 Actually, Qobs can be obtained in a straightforward way; just order {0,1}*° (the set of finite and
infinite strings on {0, 1}) by prefix, and induce the Scott topology on it. Then Qs is just the subspace of
maximal elements; it is actually homeomorphic to the Cantor space (Section 5.7; see also [Smy92]).
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are compatible, in the sense that there are at least two possible elements of w 1 and v 1
representing the same real.

Once more, the relation =; is not an equivalence relation: there are some pairs which
are certainly ruled out as non-equivalent, but there may be some other pairs which are
considered as “possibly equal” only because there is some possibility that they turn out
(in the future) to be equal (i.e., to represent the same real number). For example, the
two sequences (1,0,0,0,0) and (0,1,1,1,1) must be considered equal, because they can
be prefix of (1,0,0,0,0,...) and (0,1,1,1,1,...), both representing the number 1/2.

Also in this case, = D=;;1 and moreover = is the intersection (limit) of the =;’s. So,
our tolerance relations do approximate the (undecidable) equivalence =.

2.2 Two case studies

In the present section, we study more extensively two examples of situations in which
tolerance relations arise, and which inspired, in different ways, the first studies of the
abstract relation of concurrency.

Given the definition of a distributed system as one in which transmission delays are
not negligible, it is natural to consider the components of such systems as asynchronous
devices: in fact, for a large system, there is no guarantee that the clock period needed
for achieving synchrony of the components is wide enough for it to be perceived correctly
throughout the system. The first example is therefore a case study which relates the idea of
tolerance with some issues in asynchronous circuit design. Much of our discussion is based
on [Sei80], where a thorough analysis of self-timed asynchronous systems is presented (see
also [Kat94]).

On the other hand, we have already mentioned the fact that Petri’s original axiom
system for concurrency was inspired by the early attempts to axiomatize relativistic phys-
ics; the reason is that relativistic simultaneity is a tolerance relation which cannot be
an equivalence. Thus, we also discuss in some length some basic facts about relativistic
simultaneity in a model-theoretic setting.

2.2.1 Using tolerance as a design tool: the case of asynchronous circuits

Much of the design of a system is concerned with functional aspects which can be described
in a metric-free topological setting, with the help of logic diagrams, circuit diagrams or
such, which allow the designers to concentrate on the system behaviour at a level of
abstraction where implementation details are immaterial. Nevertheless, sooner or later,
it becomes necessary for the designer to think about the spatial geometry of the system,
which is governed by specific physical laws, determining also the behaviour of the circuit
in time.

This requires the use of some kind of discipline to establish a set of signalling conven-
tions on the system interconnections and element timing, in order to obtain the correct
sequencing of events happening at different locations of the system, and to prevent from
inconsistent behaviours.

There are basically two approaches one can use for defining such disciplines: syn-
chronous systems and self-timed (asynchronous) systems. In the former case, sequencing
and time are connected by means of a global clock signal, which synchronizes events



2.2. Two case studies 17

throughout the whole system. In the latter, the connection between sequence and time
is maintained only locally, in the interior of the various atomic parts of the system (the
so-called “elements”), while some kind of signalling protocol is used to maintain global
consistency.

Even though synchronous systems are by far the most widely used at present, they
present some (at least, potential) serious limitation: some of these are related to the dif-
ficulties of moving information from point to point within a single global-clock period,
and of managing very large designs in a framework in which all system parts must oper-
ate together in “lockstep”. Moreover, if a system is made of many independently-timed
parts, the problem of clock synchronization becomes a major issue; unfortunately, clock
synchronization cannot be accomplished with complete reliability, due to the presence of
metastable states [Sei80].

Therefore, the self-timed discipline seems the most promising: each element can be
designed simply as a synchronous system, with the possibility of stopping and restarting
the local clock at any time. Signalling conventions are then used to synchronize the various
parts in a delay-insensitive fashion (i.e., in a way which abstracts from communication
delays).

In this subsection, we shall first present some examples of signalling protocols which
are typically used in the design of self-timed systems; then, we shall further discuss some
implicit assumptions which are usually considered when using the self-timed approach,
introducing the notion of “equipotential region”. Finally, we shall see how this is related to
some idea of observability which can be described by using tolerance-continuous functions.

Two-cycle vs. four-cycle signalling

Consider an asynchronous system with two agents which must interact: one agent (called
master) is to request the other (called slave) to process a certain set of data, and the
process should proceed with the slave providing an output back to the master. We assume
that there is no global clock for synchronizing the communication between master and
slave, which amounts to saying that the communication process requires a non-negligible
delay, and the protocol must guarantee correctness regardless of the delays. Such protocols,
or signalling conventions, are usually termed delay-insensitive, and are typical in every
approach to the design of asynchronous systems.

There are two kinds of communication lines from the master to the slave: the first is
represented by the input data I to the slave, and the second by the signal lines needed to
perform the communication protocol. Also, two kinds of lines exit from the slave, i.e., the
output lines O and the lines providing feedback signals to the master.

The easiest way to implement the communication protocol is the following. Suppose
that there are only two signal lines, one from M (the master) to S (the slave), called the
request line (req), and one from S to M, called the acknowledge line (ack), both of them
carrying binary information (so, they can be either low or high). Initially, both req and
ack are low (in symbols, req |, ack |). The protocol proceeds as follows: when M has
prepared the input, it asserts req (req 1) and leaves the input stable (untouched), in order
to allow S to read it correctly. When S notices that req is high, it processes the input,
prepares the output, and then signals back to M by asserting ack, which so becomes high.
When M notices that ack is high, it can read the output.
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Figure 2.3: Two-cycle signalling (space-time diagram)

This protocol is known as two-cycle signalling, and could be depicted in a waveform
space-time diagram as shown in Fig. 2.3.

We interpret the diagram as follows: req and ack are depicted simply as lines which
can be either low (2) or high (_~); I and O can be either stable and correct (straight line)
or not (dashed area).

For sake of simplicity, we assume to have a global (real) time axis. Initially (at time 0)
req and ack are low. At time ¢y, inputs are ready and the master asserts req (time #;).
When the slave notices this, it prepares the output (time ¢2) and asserts ack (at time ¢3).
When M notices that ack is high, it reads the output and changes the input, preparing it
for a new request (time ¢4). Now, when input is ready (at time ¢5), and it unasserts req
(which happens at tg), to let the slave know that a new input is to be processed.

This starts another request /acknowledge cycle (the first cycle is that appearing between
the two dotted lines in the above diagram), which is similar to the previous one, but where
the roles of low and high are changed, because now the two signal lines are both high.

The master and slave algorithms can be written informally as follows:

MASTER = loop
prepare input;
Jlip req;
wait ack;
read output;
forever

SLAVE = loop
wait req;
process input;
prepare output;
flip ack;
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Figure 2.4: Two-cycle handshaking (space-time diagram)

forever
Here, we used the two following primitives:

e flip change the value on a line (if it was low, it becomes high, and viceversa);

e wait wait until the value on a line changes.

In the very special case of a communication where both input and output are empty,
this protocol reduces to a simple handshaking protocol, the so-called two-cycle handshak-
ing. In this case, the space-time diagram (which now involves only the req and ack lines)
is simply that presented in Fig. 2.4 (as usual, we have used a pair of dotted lines to rep-
resent a single request/acknowledgement cycle; observe that the cycles start alternatively
with either both lines high, or both low).

The problem with two-cycle signalling (or handshaking) is that it requires the master
and slave to contain an additional state for “remembering” which is the current state of
the request/acknowledge line, and to flip them accordingly. In practice, we need an extra
storage for keeping track of the state of each line.

In order to solve this problem, one could design a more complex (from a transition
viewpoint) solution, where the two lines are reset at the end of each cycle, so that mas-
ter/slave have no need to keep track of the current state of the outgoing lines. This is
called the return-to-zero signalling, or four-cycle signalling.

The waveform diagram of a four-cycle signalling is shown in Fig. 2.5.

Let us see how a single signalling cycle proceeds in this case. Initially, both lines are
low. At time ty, the input is ready, and so M asserts (time ¢1) the request line to let
the slave know that data are ready to be processed. When the slave notices that req is
high, it reads the input, processes the data and produces an output (at time ¢2), and then
asserts ack (time ¢3): now, both lines are high. As soon as the master notices that ack is
high, it can read the output (which is currently stable), while the input becomes unstable
(in the sense that the master can change the input value at will; this happens at time
t4). In practice, ack becoming high is the signal of “output ready”. When the master has
completed its usage of the output, it unasserts req (at ¢5): only at that point, the slave is
authorized to change the output (at time ¢s) and unassert the ack line (time t7).

Observe that both lines are low at the end of the cycle. In practice, the state of the
two lines can be thought as follows:
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Figure 2.5: Four-cycle signalling (space-time diagram)
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Figure 2.6: Four-cycle handshaking (space-time diagram)

e both lines are low: master has not yet submitted any request; slave is ready to
process data;

e req is high, ack is low: master has prepared the input data (which are currently
stable) and a request has been submitted to the slave;

e both lines are high: output from the slave is ready; in this phase, output is stable,
while input may be changed;

e req is low, ack is high: master has been served, and the output may be changed;
slave will become prompt to serve another request.

Notice that for the master to submit a new request, ack becoming low must be noticed
by the master, for otherwise he would not know whether the slave has been already
acknowledged that the previous output had already been read.

As before, we can ignore the data part, and sketch a simple handshaking scheme (the
four-cycle handshaking) as in Fig. 2.6.

Observe that the algorithms corresponding to four-cycle signalling are more complic-
ated, because they involve more transitions, but they do not make use of the flip primitive
(which requires extra-memory):
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Figure 2.7: The four seasons

MASTER = loop
prepare input;
set req;
wait-high ack;
read output;
reset req;
wait-low ack;

forever

SLAVE = loop
wait-high req;
process input;
prepare output;
set ack;
wait-low req;
reset ack;

forever

Here, we used only the primitives:
e sct/reset  sets a line high/low;
e wait-high/low  waits until a line becomes high/low.

In general, four-cycle signalling is more easy to implement than two-cycle signalling,
because it does not need extra-memory for keeping track of the current state of each line.

It is tempting, at this point, to represent four-cycle handshaking in the form of the
Petri net drawn in Fig. 2.7 (left), and known as the four seasons. The most interesting
fact about this net is that it can be reconstructed from the tolerance space (concurrency
relation) drawn at its right (using the techniques described by Petri in [Pet80a]), and has
been indicated [PS87] as the smallest model for his axiom system for concurrency®.

°Tt may also be interesting to observe that the partial order arising as the unfolding of this net is a
semiorder which we shall encounter again in Chapter 6.
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Implicit assumptions — Equipotential regions

The signalling disciplines described above are quite standard in the design of asynchronous
circuits, yet we believe that a more thorough understanding of the implicit assumptions
underlying such protocols is necessary.

As a matter of fact, we are dealing with an asynchronous system, which works in a
self-timed fashion, and where the control is completely delegated to the single elements:
there is no concept of (global) clock, but there exists a fully distributed protocol which
aims at correctly sequencing the single events. A self-timed system is an interconnection of
parts, which are called elements (in the case of our example, there are only two elements,
the master and the slave): we can assume that each element has some way to preserve
correctness in the sequence of events occurring locally; for example, each element may
possess an internal clock which makes things happen in the right sequence.

The main problem in the design of a self-timed system is to preserve correctness in the
global sequencing of events, even though there is no global clock to synchronize actions
taking place at different elements. In order to accomplish this task, there are special signal
lines which are used by the elements to communicate with one another, e.g., by indicating
that a certain computation is allowed to start, or that another one has been completed.
An important point, here, is that correctness of the signalling protocol must not depend
on any assumption about delays (and, for this reason, we often speak of delay-insensitive
protocols). In other words, the sequencing of events must be correct regardless of the
delays in the communication between different elements.

One should interpret with care the necessity of preserving causal relations in the se-
quencing of events, since elements and connection between elements have some physical
extent: according to relativistic principles, relations between occurrences of events at
different points in the space may be interpreted inconsistently by observers at different
locations. Moreover, if the routing and relative transmission delays are uncertain, a rela-
tion that holds in a certain physical region close to where it is created may fail to hold
elsewhere. This simple observation has many consequences, and could make the discus-
sion about properties of asynchronous systems much more complicated than is justified:
in order to avoid such difficulties, one usually makes a simplifying assumption, admit-
ting that there are small areas in the system where delays are negligible, and thus the
communication can be assumed to take place instantaneously.

Such small pieces of the circuit (system) are called equipotential regions; as Seitz [Sei80)]
observes:

This approximation is justified so long as the area is sufficiently small that
the delay associated with equalizing the potential across any wire is small in
comparison with switching delays or signal transition times. This approxima-
tion is roughly equivalent to an assertion that related occurrences are known
to be sufficiently separated in time in comparison with wire delays that the
relation will be observed to hold from any point of observation within the
region.

The determination of equipotential regions is not at all obvious, and may be chosen on
many different criteria; it can be characterized by defining a limit on the area, or on the
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Figure 2.8: Equipotential regions defining a covering

maximal wire length within a region, and these limits will usually depend on the various
layers. As Seitz notices, as far as MOS technology is considered, “a single chip is today
[in 1980] a good approximation of an equipotential region | ... |, so long as there are no
metal wires longer than about 17 mm, diffused wires longer than about 500 u, or poly
wires longer than about 300 p”.

Clearly, it is necessary for every element to be contained entirely within at least one
equipotential region, but it can be included in more than one: this expresses the fact
that elements are interpreted as locally synchronized parts of a system which is globally
asynchronous. Equipotential regions thus do not partition the system into disjoint com-
ponents, but rather define a covering of the set of spatial locations, each element of the
covering corresponding to a single equipotential region, like in Fig. 2.8.

There is a very simple, yet meaningful, way of thinking about equipotential regions.
Suppose, in a very rough view of the system, that each element is represented by a point
in the Euclidean space, with a full-connection scheme (i.e., every point can communicate
directly to any other), and that signal delays are proportional to the distance between
sender and receiver; further, let v be the velocity of signals. The time required for a signal
sent by x to reach its destination y is thus d(x,y)/v where d(z,y) denotes the distance
between z and y. Seen in another way, the set of points to which = can signal within
time ¢ is simply the set of all points whose distance from z is at most v - t. This defines
a “forward” cone from each space-time point (called posterior cone in [Car58]): in other
words, for every space-time point P there exists a “cone” of space-time points in the
future to which P can signal. Of course, there is also an entire region of space-time in the
past which can signal to P (called the “backward cone”, or prior cone). This situation is
pictured in Fig. 2.9, where the backward and forward cones of a point in a one-dimensional
space are represented (the horizontal line corresponding to a time-slice, i.e., to a set of
space-time points whose time coordinate is constant); a similar picture is presented in
[Ben91] (Chapter 1.2, Fig. 5).

Assuming the presence of equipotential regions is equivalent to assuming that signals
propagate simultaneously within each region, as soon as they enter it. Fig. 2.10 shows the
forward signalling cone relative to a point in the one-dimensional case, when a structure
of equipotential regions is assumed.
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Figure 2.10: Approximated forward cone when equipotential regions are assumed
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Now, we want to attack the problem of defining in a more formal way the concept
of equipotential region, and provide a notion of “observability” which is suitable for a
description of an asynchronous system as discussed above. One primitive idea which we
certainly need is the concept of space location; we let L be the set of locations, which
are simply the (unextended, idealized) entities where computation takes place in some
unspecified way. The set of locations is covered by equipotential regions; in other words,
we have a fixed set R C (L) of regions satisfying the following constraints:

e every region R € R is a non-empty (possibly infinite) set of locations;

e every location belongs to some region; i.e., for all [ € L there exists some R € R
such that | € R;

e if R, R' are two regions, and R C R', then R = R'.

The two first requirements simply state that R is actually a (proper) covering of L; the last
requirement means that we are only interested in “maximal” regions (i.e., equipotential
regions cannot be nested).

As a matter of fact, we can make some stronger assumption about the structure of
equipotential regions; indeed, as previously discussed, an equipotential region is simply
a (maximal) set of points in the circuit which are not too far away from each other. In
other words, a region is defined by a ball in the Euclidean metric space of a fixed (small)
radius . Under this assumption, which implies that delays depend only on the physical
distance between points, the set of regions may be described by using a binary relation of
“vicinity”.

Two locations [ and I’ are said to be adjacent if they are sufficiently close to each other
(i.e., if their distance does not exceed the limit required for the level of approximation
we are using), and we denote this fact by [ col’. Thus the covering R is simply the set
of maximal cliques of co (a region is a maximal set of adjacent points). Note that the
set of regions is not a partition of L, unless co is an equivalence relation. As a matter
of fact, overlapping of regions is not an accident, but a precise consequence of space-time
continuity of signals: a signal can be directly forwarded only to a point which is sufficiently
near in the space, which means that L must actually be connected under co (in the graph-
theoretical sense), in turn implying that R is actually a covering and not a partition of
the set of locations. Hence, formally, the relation co of vicinity is a symmetric, reflexive
(but, in general, not transitive) relation, whose transitive closure is the complete relation
L x L.

Now, we turn our attention to observations. We can assume that there is a set V' of
views, each corresponding to a (partial) description of the state of the whole system. Each
location, at each moment, will observe a certain view. In general, as a consequence of
transmission delays, two different locations may possess, in the same instant, two different
incompatible views of the state: this may happen because information flows in the system
with a non-negligible delay. In order to describe this formally, we introduce a predicate
Con of consistency; more precisely, Con C pg, (V) is a finitary predicate such that:

e every view is consistent; i.e., for all v € V', we have {v} € Con;

e every subset of a consistent view is also consistent; i.e., if A € Con and B C A, then
also B € Con.
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Another simplifying assumption is needed at this point, in order to make the discussion
easier. We can assume that consistency is described by a binary compatibility relation ~,
which is a symmetric and reflexive relation'. In other words, a set is consistent if and
only if it is a clique of the relation ~.

We are now ready to relate the notion of vicinity to the concept of consistency (or
compatibility). In practice, even though the views at a given instant may be inconsistent
at different locations, consistency is required when the locations are adjacent: this is what
we mean when saying that “the relations produced anywhere in one region hold everywhere
[in the same region|” [Sei80]. Formally, the instantaneous observation of a system state is
simply a function o : L. — V assigning a view to each location in such a way that views
assigned to points in the same region are consistent. In other words, we require that:

VR € R,VA Cg, o(R). A € Con.

Note that consistency is expressed by saying that every finite subset is consistent.
Under our simplifying assumption, this is absolutely equivalent to requiring that the
compatibility relation holds between views of adjacent locations, i.e.,

VI,I' € R.lcol! = o(l) ~ o(l').

In fact, this happens if and only if the function o : (L,co) — (V,~) is a graph morphism,
or (a term which we shall introduce later on) a “tolerance-continuous” function.

To summarize: we can describe the spatial geometry of the system as a tolerance
space (i.e., undirected graph), where tolerance corresponds to vicinity, and use tolerance-
continuous functions (i.e., graph morphisms) to describe observations, where the codomain
is also a tolerance space of “views”, with tolerance corresponding to compatibility. In a
slogan, we can conclude by saying that “observability implies continuity”, in the sense
that every observable state is a continuous function.

2.2.2 Tolerance relations and axiomatizations of relativistic time

In this subsection, we shall make a short digression about the possibility of axiomatizing
relativistic time, and prove how the relativistic notion of simultaneity assumes unavoidably
the form of a tolerance relation. Our discussion is based on the axiomatization given in
Chapter 1.2 of [Ben91].

Precedence and simultaneity in a relativistic setting

Let us go back for a while to the representation of Fig. 2.9: in that case, we were considering
a very simplified form of space-time, where space is just one-dimensional (i.e., we are
working in the Minkowski two-dimensional space). Since we aim at studying a relativistic
description of the physical world, we take ¢ (the light velocity) as our signalling velocity.

'0This assumption is far from being harmless, but later we shall see how one can get rid of it, working in
a more abstract setting. In fact, we shall later introduce the notion of “generalized tolerance space”, where
tolerance is not taken to be a binary relation, but rather a finitary predicate satisfying exactly the same
restrictions as Con. If we endowed both the set of locations and the set of views with such generalized
tolerance relations, we would obtain much the same results.
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Figure 2.11: Signalling cones in the (rotated) two-dimensional Minkowski space

Thus, the forward cone of a point P in the space-time is just the set of future space-
time points which can be reached from P by a signal travelling at the light velocity. A
great simplification can be introduced, by assuming that ¢ = 1 and by rotating the whole
diagram clockwise over 45°: in this way, the forward and backward cone of the origin are
simply the first and third quadrant (see Fig. 2.11).

Clearly, one can at this point introduce a precedence relation between space-time
points, by postulating that

(z,y) < (2',9) &= z<2’ Ny<y

(which expresses the condition under which the point (z,y) may signal to (z/,y'), i.e.,
(«',9') is in the forward cone of (z,y)). It is worth noticing that there is no special reason
to assume that space and time have the structure of R: we can take space-time to be Qx Q
or even Z x Z, if we just need an approximation having countably many points. (This is
in fact what one does when dealing with tools for measuring time and space having only
a finite resolution power).

Now, let P and () be any two points in the space-time; clearly, several possibilities
may arise:

e P and (Q may be causally related, in either direction; i.e., we might have either
P<QorQ<P;

e it is possible that P and () are not causally related, simply because only a signal
travelling exactly at the velocity of light can connect them; we therefore define a
new relation <. (which Van Benthem calls “connectability by the speed of light”)
by postulating that

P<.Q < —-(P<Q) AVR.(Q<R = P<R);

in other words, P cannot signal to (), but P can signal to every point to which @
can signal;
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Figure 2.12: The relations of precedence, connectability by the speed of light and simul-
taneity

P<Q

e finally, if no one of the relations P < Q, Q@ < P, P <. @, Q <. P holds, we say that
P and @ are concurrent, or simultaneous, written P co Q).

We present, in Fig. 2.12, how these different possibilites are realized by different points in
the space-time diagram.

Now, observe that concurrency is clearly a reflexive and symmetric relation, but it is
not transitive, i.e., it is simply a tolerance relation, and not an equivalence: this should not
be surprising, after all (the same situation happens in the context of concurrency theory,
where concurrency is always assumed, or turns out to be, a tolerance relation). But, is
it possible to do any better? In other words, is there some way of defining simultaneity
(concurrency) in a relativistic setting as to obtain an equivalence?

We shall answer negatively to the above question, by making a short digression into
model theory. Observe that these observations will naturally lead to consider tolerance as
the only serious candidate for simultaneity in (relativistic) physics.

First, we can assume that precedence in space-time is the only primitive relation, from
which simultaneity should be defined by means of some logical construction. In the above
discussion, we precisely defined it as follows:

Pewo@ < —~(P<Q)A~(Q<P)AIR,R.(P<RA-(Q<RAQ<R A=(P<R)).

In any case, simultaneity is defined “somehow” starting from precedence; but what kind

of definability should we admit? We can restrict ourselves to first-order definability, or
consider also higher-order logic; we quote Van Benthem’s [Ben91] considerations on this
subject:

Why all this fuss about ‘first-order’ versus ‘higher-order’? Non-logicians are
inclined to think that this is a mere logician’s fad. Yet this would be a mistake.
The borderline between the two is a philosophically significant one, as Quine
has argued repeatedly. To mention just one aspect, second-order principles are
much more sensitive to the ‘set-theoretic investment’ made in the background
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theory of our temporal structures. This shows in the independence proofs of
set theory, where various ‘real continua’ may arise from the same Dedekind
construction on the rationals, depending on the (kind of) subsets available for
R in the set-theoretic universe. In using second-order principles we are not
only discussing our temporal order, but also its super-imposed set-theoretic
structure.

In the light of these statements, it seems reasonable to use only first-order logic for
deriving non-primitive relations from primitive ones (and, in particular, for deriving the
simultaneity relation starting from precedence).

In the following subsections, we shall prove that, in fact, it is not possible to define
simultaneity (in the space-time structure) as an equivalence relation.

A short digression in model theory

Before proceeding in our discussion, a small digression in model theory is required; we are
not laying any claim of precision in this discussion, and refer the reader to the specialized
literature on the subject for more information (see, for example, Chapter 5 of [BM76]).
A first-order language L is defined by the following data:

e an indexed family (R;);cr of predicate symbols, each with a fixed ariety A\; € w;
e an indexed family (c;);cs of constant symbols;

e a countable set {vg,vi,...} of variables.

An L-term is either a constant symbol or a variable. The set of L-formulas is then
recursively defined as follows:

¢ atomic formulas are of the form R;(t1,... ,ty;) where the t;’s are L-terms;

e if ¢,1) are L-formulas, then also —¢, (¢ A 1) and Vv, ¢ are formulas.

We let FV () be the set of free variables'! of the formula ¢; we say that ¢ is closed if
FV(¢) is empty.
An L-structure i is defined by:

e a non-empty set U (called the “domain” of il);
e an indexed family (R;)scr of relations on U, with R; having ariety \;, i.e., R; C UM

e an indexed family (c;);cs of elements in U (i.e., ¢; € U for all j € J), one for each
constant.

We often say that L is the language of 4. An L-assignment « for the structure 4 is a
function mapping each variable v,, to an element (vy,) (or simply ) of U.

The interpretation U*(t) of a term ¢ in the structure 4, under the assignment «, is
defined as ¢; if t = ¢;, and as oy, if £ = vy.

Now, satisfaction of a formula ¢ by the structure i (under the assignment «), written
U =q @, is defined inductively as follows:

"'More formally, the set of free variables of a formula can be defined inductively as follows: the free
variables of an atomic formula are exactly those variables occurring in the formula; moreover, F'V (—¢) =
FV (), FV(¢p A ¢) = FV(¢) U FV (¢) and finally FV (Vv,¢) = FV(é) \ {vn}-
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o U =4 Ri(t1,... ,ty,) if and only if the tuple (U*(1),... ,4%(¢),)) belongs to R;;
e il =4 —¢ if and only if U |, ¢ does not hold;
o =4 (¢ A 9) if and only if both U =, ¢ and U =, 9 hold;

o i |=q Vv ¢ if and only if, for all u € U it holds that { =4y, /o) ¢, Where afvy, /u] is
the assignment which is the same as « except for the variable v, which is mapped
to u.

It is easy to see that the validity of i =, ¢ only depends on the values assumed by « on
the set F'V(¢). In other words, if 4 =, ¢ holds, and if § is another assignment which
coincides with o on every free variable of ¢, then also il =3 ¢. In view of this observation,
we can use a shortcut: if ¢ contains n free variables, we shall write 4l =4, . 4, ¢ to mean
that U |=, ¢ holds whenever the value assumed by a on the i-th free variable!? of ¢ is
a; (i=1,...,n). In particular, if ¢ is a closed formula, we simply write il |= ¢, because
satisfiability for closed formulas does not depend on the assignment.

Now, every formula ¢ with n free variables defines an n-ary relation R® on U, in the
following precise way:

(a1,... ,an) €ER? <= U, an b

An n-ary relation R in the structure 4l is (first-order) definable if there exists a formula
¢, with n free variables, such that R = R?.

Now, consider an n-ary relation R on a set U, and a bijection f : U — U; we say that
R is invariant under f if and only if, for all (a1,... ,a,) € U™

(@1,... ,ap) € R <= (f(a1),-..,f(an)) € R.

In particular, a (structure) automorphism for il is a bijection f of the domain of 4l into
itself such that R; is invariant under f (for every i € I), and f(c;) = ¢; for all j € J. The
following quite standard result of model theory will be used in the following:

Theorem 2.2.1 Let il be a structure, R an n-ary relation which is definable in U, and f
an automorphism of 4. Then R is invariant under f.

Proof: Since R is definable, there will be a formula ¢ (with n free variables) such that
R = R®. We proceed by induction on the structure of ¢.

e Suppose that ¢ = R;(t1,... ,tm). Then:

(ala"' ) @ ) € R? — ulzal, +y0n Z(tl m)

— (uala ;an(tl) uala aan(t )) € R;

<= (R; being invariant under f) (Uf(@)rflan)(3)) o gyf(@)flan) (3 V) € R,
— U |_ fla1),...,f(an) R; (tla atm) <~ ( ( )’ s 7f(a'n)) € R?.

vbd

12We take as natural order between variables the one induced by their indexes.
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e Suppose that ¢ = (¢ A ). Then:

(a1y-.. ,an) € R® <= U k. .0, (0 A D)

— U |:a1,...,an 2 and U |:a1,...,an "/)

< (ay,...,a,) € R? and (ay,... ,a,) € RY

— (f(afl)a T 7f(an)) € R¥ and (f al)a"' 7f(a'n)) € R"/f
= UEfa),. flan) P a0d U Eray), . flan) ¥

— U |:f(a1),...,f(an) (‘P A ’l,b) — (f(a'l)a- - af(an)) € R?.

e Suppose that ¢ = —p. Then:

(al, e ,an) €ER? —= Izal,...,an -

< not U =g, a0, ¥ <= (a1,...,a,) € RY <= (f(a1),...,f(an)) € RY
<= 10t U F)fay),... . flan)P = U Efar),....flan) 7P

— (f(a'l), s ,f(a’n)) € R¢

e Finally, suppose that ¢ = Vx1. Then:

(a1,...,an) € R® <= U=, a, VX
<~ forallueU, U |:(a1,...,an)[x/u] Y <= (ay,...,a,)[x/u] € RY;

now, (ai,...,an)[x/u] is a vector which coincides with (a1,... ,ay), except (pos-
sibly) for the position corresponding to the free variable x of ¢, where it has value
u. But then:

(a1,... ,an)[x/u] € RY < (f(a1),-..,f(an))[x/f(u)] € RY
= for allu € U, U = (far),.... fan))x/u] ¥
<= (since f is bijective) for all u € U, U F(y(ay),...,f(an))x/u] ¥

= UFEfa) flan) VXY = (f(a1),..., f(an)) € R.

This completes the proof. O

Relativistic simultaneity is not an equivalence relation

With the help of Theorem 2.2.1, we shall now be able to prove that no non-trivial equi-
valence relation is first-order definable in the space-time starting only from precedence
relation. This explains why the previously defined simultaneity (which is an intransitive
relation) is the best possible definition of concurrency in a relativistic setting. Our results
are actually a rephrasing (and a bland generalization) of Theorem I1.2.1.5 of [Ben91].
Theorem 2.2.2 No non-trivial'® equivalence relation is first-order definable on the struc-
ture (Q, <) (where < is the standard linear order for the rationals).

Before proving Theorem 2.2.2, we need the following

Lemma 2.2.1 Let q,q',q" € Q be three distinct rationals, with ¢’ < q <= ¢" < q. There
exists an automorphism fg'_’q” of (Q,<) such that fg'_’q”(q) =gq and fg'_”/' (¢") =4q".

13 An equivalence relation is trivial if it is either the identity or the universal relation.
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Proof: Let f = fg'_’q” be defined as follows:

flz) = (¢" - q)wlt(q’ —4q")g
7 —q

It is immediate to prove that, under the condition assumed on q,q¢’,q", we have z < y
if and only if f(z) < f(y). A straightforward check proves that in fact f(¢g) = ¢ and

fld)=4". O
Now we can come to the proof of the theorem:

Proof of Theorem 2.2.2: Let ~ be a definable equivalence relation different from the
identity, and suppose that  ~ y and z # y (say, z < y). By Theorem 2.2.1, ~ is invariant
under every automorphism of (@), <) and so, in particular, under the automorphisms
defined in Lemma 2.2.1. Take any z # y with < z: since z ~ y we have f¥7%(z) ~

¥7%(y), which means z ~ z. Moreover, for any z < z we have f77%(z) ~ fy7*(y), i-e.,
z ~ gy. Using transitivity, we thus have that every point is related to z under ~, i.e., ~ is
the universal relation. O

By using exactly the same arguments, one can show that the same happens for (R, <).
We now pass to the Minkowski two-dimensional space, taking QQ as underlying field (but
the same is true for R); this is exactly Theorem 1.2.1.5 of [Ben91], even though our proof
is slightly different, and uses Theorem 2.2.2.

Theorem 2.2.3 (Van Benthem [Ben91]) No non-trivial equivalence relation is first-
order definable on the structure (Q x Q, <), with < defined componentwise.

Proof: First observe that, if f, g are automorphisms of (Q, <), then

(f9): @xQ — QxQ
(z,y) = (f(2),9(y))

is an automorphism of (Q x Q,<); in fact (z,y) < (z/,y') iff z < 2’ and y < ¢/, which
happens iff f(z) < f(2') and g(z) < g(a'), ie, (f,9)(z,y) < (f,9)(z',y). Now, by
combining in the various possible ways the identity map 1g and the automorphisms of
Lemma 2.2.1, and by using the same arguments as in the proof of Theorem 2.2.2, we
obtain the result. O

In conclusion, the way we used to define simultaneity is not only satisfactory and
intuitive, but there is no way of defining it as an equivalence relation by starting only from
relativistic causality (precedence). In other words, simultaneity is unavoidably a proper
tolerance relation (and not an equivalence), at least if we allow only for quantification over
space-time points in our metalanguage, as the above quotation suggests.



Chapter 3

An introduction to partial orders
and domains

In this chapter, we shall introduce some basic notions of domain theory. Some of the
results presented here are quite standard, and can be found for example in the survey
[GS90]; some other theorems are new, and will be useful in the sequel. We shall prove all
the results which are non-trivial or which cannot be found directly in the literature.

3.1 Fundamentals

A preorder (or quasi-order) on a set P is a relation T which is reflexive and transitive. The
pair P = (P,C) is called a preordered set; when no confusion arises, we use P (D) and
C (possibly, with special subscripts) to denote the underlying set and preorder relation of
the preordered set P (D, respectively). If C is also antisymmetric, i.e. if

then we say that C is a (partial) order on P, and that P is a partially ordered set (or
poset, for short). If moreover for all z,y € P either z C y or y C z holds, we say that C
is a total (or linear) order.
The covering relation associated with C, usually denoted by =, is defined by putting
x Cy iff
T#YNZzCyAVz. (e C2zCy = =2V z=y).

In other words, = =C \ C?; we say that C is combinatorial if it coincides with the reflexive
and transitive closure of' .
Now, let P be a poset, X C P and p € P; we shall say that

e p is an upper bound (lower bound) for X, and we write X C p (p C X, respectively),
iff t Cp (pCx,resp.) for all z € X; if X has an upper (lower) bound, we say that
it is compatible (lower compatible, resp.), and write it as X 1 (X |, respectively);

In general, it is properly included in it. For example, the poset Q of rationals w.r.t. their natural
ordering gives rise to an empty covering relation.

33
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Figure 3.1: A consistently complete poset which is not coherent

e p is the least upper bound (greatest lower bound) for X, and we write p = UX
(p = NX, resp.), iff p is an upper (lower) bound for X and, if p’ € P is another
upper (lower) bound for X, then p C p’ (p' C p, resp.); if moreover p € X, we say
that p is the mazimum (minimum, resp.) of X, and sometimes write max X (min X)
instead of UX (MX);

e X is directed iff it is not empty and for any two z,z’ € X there is some z"” € X such
that {z,z'} C z".

It is customary to use the notations x 1 y, x1 Uzo U... Uz, and z1 Mo M ... Mz, as
abbreviations for {z,y} 1, L{z1,... ,z,} and M{z1,... ,z,}, respectively. Moreover, for
every A C P we let | A (T A) denote the set of lower bounds (upper bounds, respectively)
of A (in the special case when A is a singleton, brackets are omitted).

A precpo (pre-complete partial order) is a poset P such that, for every D C P which
is directed, LID exists. In particular, a cpo (complete partial order) is a precpo which
contains a minimum element, usually indicated by L, and called bottom.

If every compatible subset of P has a least upper bound, we say that the poset is
consistently complete (other terminology: Dedekind-complete). A stronger condition is
coherence; a subset X C P is pairwise compatible if and only if for any two elements
z,y € X it happens that z 1 y. If every pairwise compatible subset of P has a least
upper bound, we say that the poset is coherent. Note that clearly every coherent poset
is consistently complete (because a compatible set is also pairwise compatible), but the
converse is not true, as witnessed by the poset represented? in Fig. 3.1.

It is rather easy to prove that, if P is a consistently complete poset, then every non-
empty subset has a greatest lower bound: this happens because the greatest lower bound
of a set is simply the least upper bound of the set of lower bounds.

If P and P’ are two cpo’s, we say that a function f : P — P’ is
e monotone if z C y implies f(z) C f(y) (i.e., f is a poset homomorphism);

e continuous if it is monotone, and moreover, for every directed set D C P, it holds
that f(LD) = Uf(D) (the RHS is well-defined, because f(D) = {f(d),d € D} is
clearly a directed subset of P’, if f is monotone);

2A poset is usually represented using its Hasse diagram; in a Hasse diagram, the elements are drawn
as points, and x C y holds iff there is an ascending path going from the point representing x to the point
representing y. To be more precise, the Hasse diagram is a conventional way to represent the covering
relation associated to the partial order.
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o strict if f(L) = 1%

e an isomorphism if it is monotone and there exists a monotone function g : P’ — P
such that go f = 1p and f o g = 1p/; or, equivalently, if f is one-to-one, onto and
for any two elements z,y € P it holds that z Cy <= f(z) C' f(y);

e additive if, whenever z LIy exists, also f(z)U f(y) exists, and f(zUy) = f(z)U f(y).

Note that one can define an order between functions: given two functions f,g: P — P,
define f C g if and only if f(z) C g(z) holds for all z € P. This is called the pointwise
ordering of functions. We usually denote the poset of continuous (strict and continuous)
functions between two posets P, P’ (with the pointwise ordering defined before) by [P —
P'] (respectively: [P —1 P']).

Let P be a cpo; an element z € P is compact (or isolated) iff for every directed set
D C P it holds that

zCUD = 3de D.xCd.

The usual way one should think of a compact element is by interpreting it as a “finite”
approximation. In fact, we can just imagine that the order describes the information
content of each element: an isolated element z is one which has only a finite information
content, because every time we can gather all the information of x, we can do it also in a
finite fashion.

The set of compact elements of P is denoted by P°; we define, for all the elements x
of P, the set K(z) =] £ N P°. The cpo P is algebraic iff for every z € P, the set K(x) is
directed, and moreover UK (z) = z. It is w-algebraic if moreover P° is countable.

A domain is an algebraic cpo; it is a Scott domain if it is moreover consistently com-
plete. Here are some properties concerning the relations between compact elements and
continuity of functions between domains:

Property 3.1.1 Let Dy, D; be two domains:

1. a continuous function is uniquely identified by its restriction on the set of compact
elements; in other words, if f,g : Dy — Dy are continuous and f(d) = g(d) for all
de Dg, then f =g;

2. a function f : Dy — D is continuous® iff for all x € Dy and all b € DS

bC; f(z) <= Ja€ K(x).bC; f(a);

3. for every monotone function f : Dy — D7 there is exactly one continuous function
h: Dy — D1 extending f

3This is also known as the € — & version of continuity; in fact, it can be informally stated as follows:
if b is a finite approximation of f(x) then there is a finite approximation a of z, whose image has also b
as a finite approximation. In other words, it is always possible to find a sufficiently “good” approximated
input to a continuous function, if we just need an approximated result.



36  An introduction to partial orders and domains

Proof: (1) Let x € Dy; then z = UK (z), and so f(z) = f(UK(z)). By continuity of f we
obtain f(z) = Uf(K(x)). But now, f and g coincide on the set of compact elements; thus
f(K(z)) = g(K(z)) and so f(z) = Ug(K(z)) = g(UK(z)) = g(z) as required.

(2) First suppose that f is continuous; the only non-trivial implication is = (the
other follows by monotonicity). Now b C; f(UK(z)) = Uf(K(z)). But b is compact and
f(K(z)) is a directed subset of D;; so there must be an element f(a) (with a Ty z and a
compact) such that b C; f(a), as required.

For the converse, we firstly prove that f is monotone. Suppose that z Tg y: if b is
isolated in Dy and such that b C; f(xz), then there is some a € K(z) such that b =1 f(a).
But a Cg y and b C; f(a), and so b C; f(y) (using the right-to-left implication of the
hypothesis). Thus, for every compact element b one has b C; f(z) = b LC; f(y), ie.,
K(f(z)) C K(f(y)) and so f(z) C1 f(y). Then, using algebraicity, we obtain that f must
be monotone. Continuity is then proved analogously.

(3) Define h(z) = Uf(K(z)), which is well-defined, since Dy is algebraic and f is
monotone; clearly, h extends f (because, if d is compact, then f(d) € f(K(d)) and so
h(d) = f(d)). To prove that h is continuous, we shall use € — § continuity. Let z € Dy
and b € D7; since h is monotone, only the left-to-right implication needs to be proved. If
b C1 h(z) = Uf(K(z)) then, since b is compact, there must exist some compact element
a € K(z) such that b C; f(a), as required. O

A very useful notion in domain theory is the concept of ideal, which allows one to
complete a poset in order to obtain a domain. Let P be a poset with minimum element
1; a (directed) ideal of P is a set I C P such that

1. I is directed;

2. I is downward-closed, i.e., | I = I (or, equivalently, if z € I and y C z then also
y eI).

In particular, for each x € P, the set | z is an ideal of P, called the principal ideal generated
by . The set of ideals of P will be denoted by Idl(P), and the same notation will sometimes
refer to the corresponding C-poset, which is usually called the “ideal completion” of P.

The following result explains why ideals play an important role in the theory of do-
mains:

Theorem 3.1.1 Given a poset P with minimum, the poset Idl(P) is a domain whose
compact elements are precisely the principal ideals of P. Conwversely, if D is a domain,
the poset Idl(D°) is isomorphic to D.

Proof: For the first part, clearly Idl(P) has minimum {L}. If S C Idl(P) is a directed set,
we prove that I = US is an ideal (and thus it is the least upper bound of S). Suppose
z € I and y C z; then x € J for some J € S, and so y € J C I. Now, suppose that
z,y € I; then z € J,y € J where J,J' € S. But S is directed, and so there is some
J" € S such that z,y € J"”. But J” is directed, and so there is some z € J" C I such that
{z,y} C z, as required.

For the compact elements, if | x C US, where S is directed, then in particular x € US
and so | z will be included in some element of S. Conversely, suppose that I is a compact
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ideal, and let S be the set of the principal ideals generated by the elements of I. This set
is directed (in fact, if | z,] y € S, then z,y € I, and so there is some z € I such that
lz Clzand |y C| 2), and clearly US = I; so there is some element of S in which I is
included, and thus I is a principal ideal. The fact that Id1(P) is algebraic follows directly
from this observation.

For the second part, consider the usual function K which maps each element of D into
the set of the compact elements below it. This is injective, because, by algebraicity,
K(z) = K(y) implies UK (z) = UK (y) and hence z = y. It is also surjective: if I is an
ideal, then let z = UI (which exists, because I is a directed set). Clearly K(z) = I. So K
is an order-isomorphism. O

This theorem in particular implies that every domain is uniquely determined by the
poset of its compact elements, from which it can be completely recovered by ideal com-
pletion.

3.2 Stable functions, Berry’s order and dI-domains

Let us go back for a while to the e — ¢ version of continuity (Property 3.1.1); recall that a
function f : Dy — D; is continuous if and only if for all z € Dy and all b € DY

bC; f(z) <= Ja € K(z).bCy f(a).

In other words, given any input z and any finite approximation b of the output determined
by z, there exists a finite approximation of the input which leads to an approximation of
the output “not worst than” b.

The problem here is that there is no canonical way to choose a: one would like to be
able to choose the least possible such input, but in general there is no guarantee that such
a minimum input exists. In other words, we would like to have a minimum finite element
M(f,z,b) which is not greater than z and whose image is not smaller than b. We shall
now formalize this notion, and prove that it can be equivalently stated in a very simple
way as a preservation of compatible greatest lower bounds.

Consider a continuous function f : Dy — Di; we say that f satisfies the minimum
modulus property iff for all z € Dy and y € K(f(z)), the set*

A(f,2,y) ={e € K(z) :y E f(e)}

has a least element, which is denoted by M(f,z,y).

We shall be interested in considering stable functions between domains of a very special
kind, the so-called “dI-domains”. A domain D is finitary iff K (z) is finite for every z € D°;
an example of non-finitary domain is represented by the ordinal w + 2 (see Fig. 3.2): this
is clearly a domain, whose compact elements are all finite ordinals plus the element w + 1,
which has infinitely many compact elements below.

A domain D is distributive iff, for any three elements z,y,2z € D, if y 1 z then z M (y U
z) = (xMy)U(xMNz). A finitary distributive Scott domain is often called dI-domain, a
term introduced by Berry in [Ber79].

“Note that this set is non-empty, because of Property 3.1.1 (¢ — § continuity).
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I

Figure 3.2: The ordinal w + 2

In the case of dI-domains, we can give a definition which is equivalent to the minimum
modulus property:

Lemma 3.2.1 Let f: Dy — D; be a continuous function between dI-domains. Then, the
following are equivalent:

1. f satisfies the minimum modulus property;
2. for all z,x" € Dy, if x t z' then f(zN2') = f(z) N f().

Proof: The proof is simple but lengthy. We refer the interested reader to [BG92], Propos-
ition 3.10. O

A function which is continuous and satisfies the condition(s) of Lemma 3.2.1 is called
stable. The notion of stability was introduced by Berry [Ber78], with the aim of generalizing
the notion of sequentiality at higher types.

A natural question is whether we can use the minimum modulus property to define
a new notion of “order” among stable functions, which is finer than the usual pointwise
order. Suppose that f,g: Dy — D; are two stable functions, with f C ¢ (under the usual
pointwise ordering): intuitively, this is taken to mean that f is an approximation of g, i.e.,
it always gives an output which is an approximation to that given by g under the same
input.

Let now z € Dy and y € K(f(z)): there will be a least approximation M(f,z,y) of
the input z which furnishes an output which is approximated by y. Clearly M(g,z,y) C
M(f,z,y), because g always gives better outputs, but it could be the case that a poorer
approximation is enough for g to get the same result. If this does not happen, i.e., if

fEgandVre Dy,y€ K(f(z)). M(f,z,y) = M(g,z,y)

then we say that f is stably less than g, and write f C; g. As a matter of fact, T4 can be
characterized for dI-domains in the following way:

Lemma 3.2.2 For any two stable functions f,qg : Dy — D1 between dI-domains, with

fCEyg,
fCsg & (Vo',z€Dy.2' Cz = f(z') = f(z) Ng(a")).
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Proof: For a proof, see [BG92], Proposition 4.7. O

The relation C; is actually a partial order (called the Berry order) which refines the
pointwise one, as stated in the following

Property 3.2.1 T, is a partial order relation, and f T, g implies f C g.

Proof: First note that, whenever f C; g, for all a € Do, fla) = f(a) Mg(a) C g(a).
So f Cs g implies f C g. Reflexivity is obvious: if a’ C a then (a) f(a), and so
f(a@') = f(a) N f(a'). For the antisymmetric property, suppose f Cs g and g Cy f, and
take any a € Dyg. We have f(a) = f(a) M g(a) and g(a) = g(a) ( ), thus f(a) =
g(a). For transitivity, suppose that f Cs g and g Cs h, and let o' C a. We then have
f(a') = f(a) M g(a') = f(a) Mg(a) M h(a’) which is in turn equal to f(a) M h(a'), because
fCsg = fEgy. O

The set of stable functions from Dy to D;, ordered by the Berry order, is denoted by
[Dy —5 D1] in the following.

3.3 Stable embedding-projection pairs

It is possible to define a notion of embedding that can be interpreted as an approximation
relation between domains, roughly in the same sense as the order relation of a domain
is taken to define an approximation relation between (the information content of) its
elements.

The standard way to do this consists in defining the so-called embedding-projection
pairs. An embedding-projection pair (or EPP for short) between two domains Dy, D; is a
pair of functions (f, g) : Dy — D1, where f : Dy — D; (the “embedding”) and g : D1 — Dy
(the “projection”) are both continuous, and satisfy go f = 1p, and f o g C 1p,. Notice
that:

Property 3.3.1 Let (f,g) : Dy — D1 be an embedding-projection pair. Then f is inject-
we, g is surjective and both are strict.

Proof: If f(z) = f(y) then also g(f(z)) = ¢(f(y)) and (since go f = 1) z = y. Let now
x € Dy; then g(f(z)) = = and so z € g(D1). Thus, g is surjective. For strictness of f,

just observe that L; C; f(Lg), which implies f(g(L1)) = L1, and so, since Ly Ty g(L1),
we have f(Lg) = L; also, so f is strict. Moreover, g(L1) = ¢g(f(Lo)) = Lo, and thus g is
also strict. O

We will mainly be interested in a specialized version of this notion, introduced by
Kahn and Plotkin in [KP78] (see also Curien [Cur86]). An embedding-projection pair
(f,9) : Dy — D1 is a stable embedding-projection pair (or SEPP for short) if moreover, for
all zg € Do and z1 € Dy, if 1 Ty f(zo) then 21 = f(g(z1)).

There is a strict relation between SEPP’s, stability and Berry’s order, which is made
clear in the following

Lemma 3.3.1 Let (e,p) : Dy — D1 be an embedding-projection pair. The following are
equivalent:
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1. {e,p) is a stable embedding-projection pair;

2. e and p are stable, and eop C; 1.

Proof: (1) => (2) We first prove that p is stable; suppose that y,3' € D; withy 1 9'. By
monotonicity, p(yMy’) C p(y)Mp(y'), so we need only prove the converse. By monotonicity,
once again, we obtain e(p(y) Mp(y')) C e(p(y)) C y, and likewise e(p(y) M p(y')) C v/, so

e(p(y) Mp(y") Cyny'.

Now, applying p to both sides, and using poe =1, we get p(y) Mp(y') C p(y Ny').

For proving stability of e, let z,2' € Dy with z 1 z/. We have to prove that e(z) N
e(z') = e(zx M a'). Note that e(z) C e(z U z') as well as e(z') C e(z U z'); so we get
e(z)Me(z") C e(zUx"), and thus, using the definition of stable embedding-projection pair,
e(z) Ne(z') = e(p(e(z) Me(z"))) which, by stability of p, equals e(p(e(z)) M p(e(z'))) =
e(zMz).

We should now prove that eop C; 1. Suppose that y,y' € Dy with y 1 ¢/. Clearly
e(p(y')) C e(p(y)) Ny', so we need only prove the converse. Suppose that y” C e(p(y)) My':
by definition of stable embedding-projection pair, y” C e(p(y)) implies y” = e(p(y")) and
thus, by monotonicity of e o p, we have 3y C e(p(y')). Thus y” C e(p(y)) My’ implies
y" Ce(p(y')), and we are done.

(2) = (1) Suppose that y T e(x). Then, since eop C; 1, one has (e o p)(y) =
(eop)(e(z)) Ny, ie., e(p(y)) = e(p(e(z))) Ny =e(z) Ny =y. O

Thus, we can simply say that SEPP’s are just common embedding-projections provided
that we consider only stable (instead of continuous) functions, and Berry’s order (instead
of the pointwise one).

One can define the composition of two (stable) embedding-projection pairs (f,g) :
Do — Dy and (f',¢') : D1 — D5 as the pair (f' o f,gog’): a routine check shows that this
is in fact a (S)EPP.

There is a close relation between stable embedding-projection pairs and special subsets
of Scott domains called strong ideals. If D is a Scott domain, a strong ideal X C D is a
set satisfying the following:

1. X is not empty, and downward-closed;

2. ifz,y € X and ¢ 1 y, then z Uy € X; i.e., X is closed under taking least upper
bounds of finite (compatible) sets;

3. if § C X is directed, then US € X; i.e., X is closed under taking least upper bounds
of directed sets.

An important property of strong ideals is the following (for an alternative proof, see
Kahn and Plotkin [KP78], Proposition P-8.6):

Property 3.3.2 Let X be a strong ideal of the Scott domain D. Then X, with the inher-
ited ordering, is also a Scott domain, which is coherent if D is, whose compact elements
are precisely those compact elements of D which are contained in X.
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Proof: X contains L, which is its minimum element (this follows since X # () and it is
downward-closed). If S C X is directed, then US € X, and so X is a cpo.

Now, suppose that x € X N D°: we prove that z is also compact in X. If S C X is directed
and £ C UxS = UpS, then ¢ C s for some s € S, because x € D°. On the contrary,
suppose that z is compact in X: we prove that it is also compact in D. Let S C D be
directed with z C LIS, and let T = {a € X : 3s € S.a C s}. T is directed: if a,b € T then
there exist s,s’ € S with a C s and b C s'; by directedness of S, there is some s” € S such
that {a,b} C s”,s0 a1 band thus allb € T. Now z C LIS implies that = C s holds for all
s € S. Sozxz €T and thus z C UT. But z is compact in X, and therefore z C a for some
a € T. Thus also ¢ € D°.

Now, algebraicity is easily proved. For all z € X, the set Kx(z) = K(z) N X is directed;
so UK x(z) = U(K(z) N X) = z, as required. For consistent completeness, let A C X be
a compatible set. Take B =] (LUA) N X: this set is directed and so UB € X; but then
LB = LUA. (For coherence, the proof is analogous). O

The aforementioned relation between strong ideals and SEPP’s is expressed by the
following

Proposition 3.3.1 ([BCS93]; see also [KP78]) If (f,g) : Dy — D; is a stable embed-
ding-projection pair between Scott domains, then f(Dy) is a strong ideal of D1. Conversely,
if X is a strong ideal of D, the inclusion map i : X — D and the function p: D — X
defined by

p(d) = U(K(d) N X)

form a stable embedding-projection pair (i,p) from X (with the ordering inherited from D)
to D.

Proof: First part. For downward closure, if y Ty f(z) then by stability y = f(g(y)) and
so y € f(Dy). Suppose now that f(z) 1 f(y) in D;. Then let z = f(g(f(x) U1 f(y)));
since fog C 1, we have z Ty f(x) Uy f(y). But f(z) C1 f(z) U f(y) and so g(f(z)) Co
g(f(z)Uf(y) (because g is monotone) and finally f(g(f(x))) C; z (because f is monotone),
which means f(z) C; z; analogously, also f(y) C1 z and so f(z) U f(y) C1 z. Thus finally
z = f(z) U f(y), and z € f(Dy). Finally, suppose that S C f(Dy) is a directed set; in
exactly the same way one proves that L1.S = f(g(LU1S)), and so f(Dy) is a strong ideal.

Second part. The inclusion map is clearly continuous, and so is p. Now p(i(z)) = p(z) =
U(K (z) N X) = z and conversely i(p(z)) = U(K(z) N X) C UK (z) = z. Finally, stability
follows from downward-closure of X. O

Since embeddings are injective, the first part of Proposition 3.3.1 simply states that,
if (f,g) : Dy — D1 is a stable embedding-projection pair, then f(Dy) is isomorphic (via
f) to a strong ideal of D;: in fact, if f(x) C f(y) then g(f(z)) C g(f(y)) and so z C y.

In the case of coherent domains, SEPP’s can be characterized in a very simple way:

Lemma 3.3.2 (See [BCS93]) Let Dy,D; be coherent domains, and f : Dy — D; be a
continuous additive injection satisfying the conditions:

1. if f(z) t f(2') then z 1 2';
2. for every y € D1 and every x € Dy, if y C f(x) then y = f(z") for some z' € Dy.
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Then f is a stable embedding, i.e., there ezists g : D1 — Dy such that (f,g) is a stable
embedding-projection pair.

Proof: 1t is straightforward to check that f is an (order) isomorphism between Dy and
f(Dg) C Dy. In fact, if f(z) C f(y) then f(z) 1 f(y) and so, by the first condition, z 1 y.
But then, by additivity, f(z Uy) = f(z)U f(y) = f(y) and thus, by injectivity, z Uy = vy,
i.e., z C y. Moreover, f(Dy) is a strong ideal of D;, and so the result can be obtained
by using Proposition 3.3.1. Indeed, the pair (i,p) : f(Dy) — D; is a SEPP, and moreover
(f,f1) : Dy — f(Dy) is also a SEPP (in fact, an isomorphism). So, their composition
(iof,f~'op) is a SEPP (note that the embedding is really i o f = f). O

The following proposition explains the structure of ideal completions which are strong
ideals in a Scott domain.

Proposition 3.3.2 (See [BCS93|, Proposition 2.2.4) Let P be a consistently com-
plete poset with minimum, and X be a non-empty subset of P such that:

1. X is downward-closed;
2. ifr,ye X and x Ty, thenx Uy € X.
The domain Idl(X) is a strong ideal of IdI(P). O

3.4 Atomicity and dI-domains

There is a special property concerning strong ideals of dI-domains, which was stated in
[BCS93], and is an adaptation of the proof of Proposition 2.3.7 in Curien [Cur86].

Property 3.4.1 Let D be a dI-domain, and X a strong ideal of D. Then X, with the in-
herited ordering, is also a dI-domain, whose compact elements are precisely those compact
elements of D which are contained in X.

Proof: We already know from Property 3.3.2 that X is a Scott domain and X° = D° N X
so the domain is also finitary. Distributivity is straightforward. O

In a Scott domain D, an element d is a complete prime if and only if, for every
compatible set X C D it holds that

dCUX — dze X.dCx.

The set of complete primes is denoted by Pr(D). We say that D is prime algebraic iff
z = UKF(z) holds for each x € D, where

KP(x)={d € Pr(D):d C z}.

The following theorem gives a precise relation between prime algebraicity and distributiv-
ity in finitary Scott domains:

Theorem 3.4.1 (Winskel [Win87]) Let D be a finitary Scott domain. Then D is dis-
tributive (i.e., a dI-domain) iff it is prime algebraic. O



3.4. Atomicity and dI-domains 43

Given a cpo D, an atom is any element d € D such that | [=d. The set of atoms is
denoted by D°, and, for every z € D, we let K4(z) = N D°. A Scott domain D is
atomic iff UK4(x) = z for every = € D. Here is an interesting property of the atoms in a
Scott domain:

Lemma 3.4.1 Let D be a Scott domain.
1. Every atom of D is compact, i.e., D® C D°;

2. if D is an atomic dI-domain, then for every compatible set of atoms A one has
KA(UA) = A.

Proof: For the first part, if z € D°® was not compact, since z = UK (z), we would have
K(z) ={L} and thus z = L, contradicting the fact that z is an atom.

For the second part, the right-to-left inclusion is obvious, so we only have to prove the
following statement: if g is an atom and a C LIA then a € A.

We first prove this in the case of finite A. Suppose by contradiction that a € A: one has
a M (UA) = a (because a C LUA) but, by distributivity (A being finite)

al(UA)=WHaNz,z€ A} =1L

because a M b= 1 for all a,b € D° a # b. So we have a = L, contradicting a € D°.

For the infinite case, let S = {UB : B C A finite}; this is clearly a directed set, and
US = UA. So a C US; but a is an atom, and so a E UB for some finite B C A. Using the
finite-case part, we so have a € B C A. O

Atomic dI-domains are also known as qualitative domains, since the work of Girard
[Gir86] who first gave a nice and simple representation theory for them, which we shall
sketch in some detail in Chapter 4.

An important property concerning the relation between atomicity and stable EPP’s is
the following:

Lemma 3.4.2 Let (f,g) : Dy — D1 be a stable embedding-projection pair. If z is an atom
of Dy, then f(x) is an atom of D;.

Proof: First remember that f is injective and strict (by Property 3.3.1); so f(z) # 11
(because z is an atom, and so it is different from L1y). Now, suppose L C y C f(x);
since g is monotone, g(11) = Lo =C ¢(y) C ¢g(f(z)) = z. But then, since z is an atom,
1o =g(y) or g(y) = z. Since y C f(z), we have y = f(g(y)) and so either f(Ly) =11 =y
or y = f(x). O

It is worth mentioning that atomic dI-domains have the special property of being
locally isomorphic to complete boolean algebras, as stated in the following

Property 3.4.2 Let D be an atomic dI-domain. For every x € D, the set | x (with the
induced ordering) is a complete boolean algebra.

Proof: The fact that | x is a complete lattice is ensured by the consistent completeness
of D, and by the observation that | = is upper bounded by z. Also, distributivity follows
from the distributivity of D. For complements, let y €| x and define A = K4(y) and
B = K4(z) \ K4(x). Observe that LA = y, and let ¢’ be defined as LIB. We have:
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o yUy' = (LKA (y) U (UK () \ K4(y)) = UK (z) = ;

o yMy = (LKA(y)) N (UW(KA(z) \ K4(y))) which gives, by distributivity, y My’ =
L{aNb:ae KAy),b e KA(z)\ K4(y)}. But clearly the greatest lower bounds of
two different atoms is always the bottom, and so y My’ = L.

So v’ is the complement of y. O



Chapter 4

Some universal constructions

4.1 Introduction

In this chapter, we study the structure of tolerance spaces with the tools of universal
algebra; to this end, we shall consider the category of (countable) tolerance spaces, with
embeddings as morphisms. It is well-known, since Rado [Rad67], that this category (which
is equivalent to the category of undirected graphs with rigid embeddings) contains a uni-
versal homogeneous object. We shall show that this category is equivalent to that of
atomic coherent dI-domains (with stable embedding-projection pairs as objects, see Berry
[Ber79]), and obtain as a consequence a universal homogeneous object for this category
also.

Rado’s very direct construction can be generalized, as to obtain universal homogen-
eous objects for other categories of representations. If one considers Girard’s qualitative
domains [Gir86], which are quite a natural generalization of tolerance spaces, it is rather
easy to construct a universal homogeneous object, which is built much in the same way as
Rado’s graph. We shall prove that this category is equivalent to that of atomic dI-domain,
and thus obtain a very direct construction of a universal homogeneous domain of this kind.

It is immediate to observe that these constructions can be further generalized consider-
ing structures with a notion of causality (enabling), like event structures [Win80, NPW81]:
clearly, tolerance spaces (qualitative domains) are very simple cases of prime event struc-
tures (general event structures, respectively), where the enabling relation is trivial. We
shall further generalize our constructions, and obtain a very direct definition for the univer-
sal homogeneous stable event structure. Unfortunately, in this case we have no categorical
equivalence with the corresponding category of domains (i.e., the dI-domains). So, only a
universal domain can be obtained in this way, but homogeneity cannot be insured.

We shall also provide an alternative construction for a universal homogeneous dlI-
domain, presented in [BCS93], based on the notion of Mazurkiewicz’s trace, and still
using Rado’s graph as starting point.

The work contained in this chapter can be interpreted in two ways: on one side, we
wish to show how tolerance spaces are a special case of very well-known representations;
on the other, we prove that their universal structure is especially well-behaved.

45
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4.2 An introduction to universality

In the theory of denotational semantics of programming languages and concurrency, many
authors have established the (in)existence of particular kinds of universal domains. The
pioneering work of Scott [Sco76], which provided a universal w-algebraic lattice, has been
followed by more research in the same direction, especially by Plotkin [Plo78] and Gunter
[Gun87]. Droste hilighted the importance of having homogeneous universal objects for
categories of domains, and obtained many results in this direction, using classical theorems
of model theory [DG93]; he also did much work in the field of relating universal domains
with their universal representations, mainly with event structures [Dro91] and Kahn and
Plotkin’s concrete data structures (see also [KP78]).

We firstly give a general, categorical introduction to universality, and express some
results which we shall use in the following. Let C be a category where all arrows are
monic, and C* be a full subcategory of C. An object U € Obj(C) is

o C*-universal iff for every object A € Obj(C*) there is an arrow f : A — U; for ex-
ample, in the case that C represents a preordered set, a C*-universal object represents
an upper bound of C*;

e C*-homogeneous iff for any A € Obj(C*) and for any two arrows f,g: A — U there
exists an automorphism h of U (i.e., an arrow h : U — U which is an isomorphism
of C) such that h o g = f; in other words, every time that an object of C* can be
“mapped” into U using two arrows, these arrows just differ for the composition with
an automorphism of U;

e C*-saturated iff for any A,B € Obj(C*) and for any two arrows f : A — U and
g : A — B there is an arrow h : B — U such that h o g = f; this can be interpreted
as follows: if an object A of C* can be mapped to U via f, and if it can also be
mapped to some other object B, then f can be naturally extended to a map from
BtoU.

We are especially interested in the case when C is an algebroidal category (since all cat-
egories of representations are such) and C* is the subcategory of all finite objects. For con-
venience of the reader, we recall here the basic definitions; a category is semi-algebroidal
if every w-chain of finite objects has a colimit, and moreover every object is the colimit of
an w-chain of finite objects. It is algebroidal if it is semi-algebroidal, the subcategory of
finite objects has a countable skeleton, and for any two objects A, B the set Hom(A, B)
is countable.
We then have the following important result, which is proved in [DG93]:

Theorem 4.2.1 (Droste and Gobel [DG93]) Let C be an algebroidal category, U be
an object of C and Cy be the full subcategory of its finite objects; then, the following are
equivalent:

1. U is a C-universal Cy-homogeneous object;
2. U is a Cy-saturated object.

Moreover, if such statements hold, then U is unique up to isomorphism. O
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This gives us a way for proving that a certain object U is universal and homogeneous;
we just have to show that, whenever we have an embedding f : A — U of a finite object A
into it, and whenever A is embeddable into B, there is an embedding of B into U which
simply extends f through the given embedding. So, one has to prove simply that it is
possible to map every finite object into the (candidate) universal homogeneous one “step-
by-step”, and every time the embedding is simply obtained by extending the previous
one.

What one usually wants, in order to simplify the proofs, is the possibility of proving
the saturation property for the very special case that B is obtained from A by simply
adding one element to it. In order to express this property in a categorical way, we define
the concept of incremental category. An arrow f : A — B in an algebroidal category C
is an increment iff f = g o h implies that either g or h is an isomorphism. We say that
C is incremental iff it contains a weakly initial object and for any morphism f: A — B
between two finite objects A, B € Obj(Cy) there exists a finite chain (A4;, f;)i=o,... n—1 such
that A= Ay, B=B,,, f = fp—10---0 fi1 o fo and each f; : A; — A;+1 is an increment.

Using the same notations as before, we shall say that an object U of C is C*-stepwise-
saturated iff for any two objects A,B € Obj(C*) and any two arrows f : A — U and
g : A — B such that g is an increment, there exists an arrow h : B — U with hog = f.
We prove the following;:

Theorem 4.2.2 Let C be an algebroidal incremental category and U be an object of C.
The following are equivalent:

1. U is a C-universal Cy-homogeneous object;
2. U is a Cy-saturated object;

3. U is a Cy-stepwise-saturated object.

Proof: We just need to prove to second equivalence, the first one being just the statement
of Theorem 4.2.1. It is clear that every saturated object is also stepwise saturated (in
every category), so we prove the converse (which holds only in an incremental category).
Suppose that f : A — U is an arrow from a finite object, and ¢ : A — B is any arrow
between two finite objects. Since the category is incremental, there exists a finite chain
(A =)Ao B A & ... A,_1 73" A,(= B) where g = gp_10---0g1 0 go and each g; is
an increment. Let now fy = f; by definition of stepwise-saturation, we obtain a function
f1: A1 — U such that f; o gg = fp, like in the commutative diagram

A=Ag L s a4, 25 4, A1 I35 A, =B
f=fol/
U

Going on this way we finally obtain an arrow f, : B — U with foog,—10---g10ogyo = f.
Letting h = f,, we have h o g = f, as required. O
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4.3 Deterministic universality constructions

4.3.1 The category of tolerance spaces with embeddings

In this section, we shall mainly consider the category of tolerance spaces and its rela-
tions with the category of atomic coherent dI-domains. Tolerance spaces are also known
from Girard [Gir87] as coherence (or coherent) spaces. A tolerance space (the term was
introduced by Zeeman [Zee62], and was later studied in various kinds of forms, e.g. in
[KKM90, Shr71]) 7 = (X,co) is a set X endowed with a binary reflexive symmetric re-
lation co, which is often called the “consistency” or “indistinguishability” relation; the
elements of X are sometimes called “nodes”. From now on, we let X and co (possibly
with suitable indexes) denote the underlying set and consistency relation associated to the
tolerance space 7.

A (tolerance)-continuous function f : T — T' is a function between the underlying
sets f : X — X' such that

Vz,y € X.zcoy = f(z)co f(y)

i.e., a homomorphism of tolerance spaces (a graph morphism, if we think of a tolerance
space as a reflexive undirected graph). An embedding' is a homomorphism f : T — T of
tolerance spaces which is injective and such that

Vr,y€ X.zcoy < f(z)co f(y).

Clearly, a tolerance space can be embedded into another one iff the former is an (induced)
subgraph of the latter. If 7 is a tolerance space, and Y C X, we let 7Y = (Y,conY?)
(i.e., the subgraph induced by Y'). Clearly the inclusion map i : 7Y — 7 (where i(y) =y
for all y € Y) is an embedding.

We let TolSp be the category of countable tolerance spaces with embedding as morphisms;
the main properties of this category are listed in the following

Property 4.3.1 In the category TolSp every arrow is monic, and an object is finite iff
it has a finite underlying set. Moreover, TolSp is an algebroidal, incremental category.

Proof: The fact that every arrow is monic follows because TolSp is a subcategory of Set
containing only injective maps, and injective maps in Set are clearly monic.

Finite objects. First observe that, for every countable tolerance space 7, one can construct
an w-chain of finite tolerance spaces (7;, f;) with limit 7 (just take any sequence of finite
sets Xo C X7 C Xy... with union X and such that |X;| < i for every ¢ € w, and let
T; = T%i, with f; defined taking the natural inclusion map). Since the presence of an
embedding from 7 to 7' obviously implies that | X| < |X’|, we immediately have that
every finite object must have a finite support. For the converse, suppose that 7 is finite
but have infinite support. Then, take the above w-chain (7;, f;) whose limit is 7 since
T can be embedded into itself using the identity, there must be an embedding of 7 into
some finite set, contradicting the hypothesis. Note that this also proves that every object
is the colimit of some w-chain of finite objects.

!These morphisms are called “rigid embeddings” in [BCS93].
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Limits of w-chains. We must prove that every w-chain of finite tolerance spaces has a
limit. Without loss of generality, we can assume to have an w-chain (Xj, co;);c,, where
Xo € X7 € Xg.... Now let X = Uje,X; and co = U;¢,c0;. The tolerance space
T = (X, co) is obviously the colimit of the above chain.

Algebroidality. At this point, we just need to prove that there are at most countably
many non-isomorphic finite tolerance spaces (which is trivially true), and that there is
only a countable number of embeddings between two finite tolerance spaces (in fact, there
exists only a finite number of them).

Increments. Note that clearly the empty tolerance space is a weakly initial object. It is
immediate to observe that an embedding f : 7 — 7' between finite tolerance spaces is an
increment precisely when |X'| = | X| + 1. It is then easy to see that every embedding can
be decomposed into increments, adding one node at a time. O

A very important property related to the category of tolerance spaces was studied by
Rado in [Rad67], where it is proved that a universal homogeneous tolerance space (more
precisely: undirected graph) exists, and an explicit construction is given. Since in the
next sections we shall provide various generalizations of this construction, we shall present
it in full detail, giving the original definition of [Rad67] (for more on Rado’s graph, see
[Cam90]).

Theorem 4.3.1 (Rado [Rad67]) Let Tr be the tolerance space having w as underlying
set, and with compatibility relation cor defined as follows

n cop m <= the min(n,m)-th bit in the binary ezpansion of max(n,m) is “1”.
Tr is the universal homogeneous object of the category TolSp.

Proof: By Property 4.3.1, using Theorem 4.2.2, we just have to prove that Tg is stepwise
saturated. We can limit ourselves, without loss of generality, to finite subspaces of Tr;
so let Y Cgn w and suppose that 7 = (Y U {x},co) is such that co’¥ = co), where
* ¢ w. We have to find x € w \ 'Y in such a way that 7 is isomorphic to T{U{x}. Let

A={y €Y :ycox}, and define z as follows

I = 21+maxY + Z 2]0.
keA

We then must prove that, for every y € Y we have z cog y if and only if * co y. Now, note
that o > 217maxY and so z is greater than every element of Y. So, for all y € Y,  cor v,
if and only if the y-th bit in the binary expansion of = is 1, if and only if y € A, which
happens only when * co y. O

4.3.2 A universal homogeneous coherent atomic dI-domain

The purpose of this section is to provide a proof of equivalence between the category
of tolerance spaces with embeddings, and the category of coherent atomic dI-domains
with stable embedding-projection pairs as morphisms. A consequence of this result is
that we have a direct explicit construction of the universal homogeneous atomic coherent
dI-domain (i.e., coherent qualitative domains).
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We let CAdIDom be the category of countable coherent atomic dI-domains, with
stable embedding-projection pairs as morphism. We first define a functor Clique from the
category TolSp to CAdIDom as follows:

e for each tolerance space 7, we let Clique(7) be the poset whose elements are the
cliques? of 7 (seen as an undirected graph); the order is given by inclusion;

o if f: Ty — 71 is an embedding of tolerance spaces, we define Clique(f) = (fe, fp)
where, for any two cliques og C X and o1 C X1, we let fo(oo) = {f(z),z € 00} =
f(o0) and fp(o1) = {z € Xo: f(z) € o1} = f~ (01).

We shall prove that Clique gives an equivalence of categories, by using Theorem A.1.1.
First, we must show that Clique is a well-defined functor.

Lemma 4.3.1 Clique is a functor from the category TolSp to the category CAdIDom.

Proof: We first prove that, for every tolerance space 7, Clique(7) is indeed an atomic
coherent dI-domain. Let D = Clique(7) for a given tolerance space 7. Observe that D is
really a poset, and least upper bounds, when they exist, are simply obtained as set-unions.

(i) Completeness. Let S C D be directed, and 0 = US. If z,y € 0 then z € «
and y € g for some «o,3 € S; hence, a C v, C v for some v € S, and so
z,y € . But 7y is a clique and so z coy. Thus o is a clique and ¢ = US.

(ii) Minimum element. The minimum element is the empty clique.

(iii) Compact elements. ~We prove that a clique is compact if and only if it is
finite. If @ = {z1,...,z,} is a finite clique and a C US for some directed
S C D, then Jay,...,a, € S such that z; € a; (i = 1,...,n). But, by
directedness, there exists a 8 € S such that o; C S forall¢ =1,... ,n, and
so a C g € §. Conversely, let a be isolated and infinite. Then we can find
an infinite sequence of finite sets «g C a3 C ... such that U;a; = a. Each
of them is a clique, and S = {ag, a1,...} is a directed set with a = US, but
a C «; happens for no 1.

(iv) Algebraicity. Let o € D; the set K(«) is the set of finite subcliques of a.
Clearly K(«) is directed and its least upper bound is . This also proves that
D is finitary (a finite set has finitely many subsets).

(v) Consistent completeness. Straightforward.

(vi) Distributivity.  Follows from set-theoretic distributivity, by simply noting
that MA = NA for every non-empty set A.

So far, we have shown that Clique(7) is a distributive Scott domain. Note that Clique(7)
is also coherent; a pairwise compatible set of cliques is also compatible, and thus it has a
least upper bound. For atomicity, clearly:

DA = {{z},z € X}.

2 As usual, a clique is simply a set ¢ C X such that & co y whenever .,y € 0.
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and moreover, for every clique a, we have K4(a) = {{z},z € a} and so UK4(a) =
Ugea{z} = .

For the second part, we need to prove that Clique(f) = (fe, fp) is a stable embedding-
projection pair, whenever f : Tg — 77 is an embedding of tolerance spaces. First observe
that, if g, 01 are cliques of Ty, 71, then fc(0y), fp(o1) are cliques, because of the definition
of embedding. Monotonicity and continuity follow from the fact that f, and f,, are simply
obtained as set-extensions of f and f!. For the property of stable embedding-projections
we have the following; let o; be a clique of 7; (for i = 0,1):

e since f is injective, one has f,(fe(00)) = f(f(00)) = 00, as required;

e suppose now that = € f.(fy(01)); this means that z = f(y) for some y € f~1(01),
ie., z = f(y) and f(y) € o1, which in turn implies z € 1. So, fe(fp(o1)) C o1;

e for stability, suppose that o1 C fe(0y), i.e., 01 C f(0p). Then

fe(fp(01)) = F(f 7 (o1)).

If z € oy, then z € f(0y), so z = f(y) for some y. Thus, y € f~'(01), and so
z = f(y) € f(f (o1)), as required.

So, Clique(f) is a stable embedding-projection pair. O
Moreover, every coherent atomic dI-domain is isomorphic to the domain of cliques of

some tolerance space:

Lemma 4.3.2 Let D be a coherent atomic dI-domain. There exists a tolerance space T
such that Clique(T) = D.

Proof: Let X = D°® and define x coy if and only if z 1 y. Now, consider this tolerance
space, and define:
p: Clique(X) — D
a —  Ua.

Observe that, if « is a clique of X, then it is a pairwise compatible subset of D, and so
Ua exists. We must prove that ¢ is an order-isomorphism.

(i) Injectivity. Suppose @(a) = ¢(B), i.e. Ua = LIB. Now K4(LUa) = K4(Lp)
and so, using Lemma 3.4.1, a = S.

(ii) Surjectivity. Straightforward, by using atomicity.
(iii) Monotonicity. Clearly, if « C £ then Ua C LS.

(iv) Order preservation. Suppose that Ua C LJ; then K4(Ua) = K4(UB) and
thus (using Lemma 3.4.1) a C . O

As a matter of fact, Clique gives a categorical equivalence, as explained in the following:

Theorem 4.3.2 The functor Clique is a categorical equivalence between the categories
TolSp and CAdIDom.
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Proof: Using Theorem A.1.1, by Lemmata 4.3.1 and 4.3.2, we just have to prove that
Clique is full and faithful. For faithfulness, let f,g : 79 — 71 be two embeddings such
that Clique(f) = Clique(g). Note that, for all z € X, f(z) is the only element of
f{z}) = fe({z}). Since fe = g, we have f = g as required.

The proof that Clique is full requires a more sophisticated technique. Suppose that 7y, 77
are two tolerance spaces and (f,g) : Clique(7g) — Clique(77) is a stable embedding-
projection pair. By Lemma 3.4.2, the image of every atom of Clique(7y) (i.e., of every
singleton clique) is an atom of 77. This means that, for all z € Xy, f({z}) contains only
one element of X;. Define h : Xy — X; by letting f({z}) = {h(z)} (i-e., h(z) is the only
element of the set f({z})). We first prove that h is an embedding of tolerance spaces.
Injectivity follows from the injectivity of f.

Suppose now that z coy in 7g. Then {z} and {y} are compatible in Clique(7p), and so (us-
ing Proposition 3.3.1) f({z,y}) = f{z})Uf({y}) = {h(z)}U{h(y)} which is a clique of 77,
which means that h(x) co h(y). Conversely, suppose that h(z) co h(y), i.e., {h(z),h(y)} €
Clique(71). By atomicity, {h(z)} U {h(y)} € Clique(71), i.e., f({z})co f({y}), which
implies z co y.

Finally, it is immediate to prove that (f,g) = Clique(h). So Clique is full. O

As a corollary, we finally obtain:
Corollary 4.3.1 Clique(Tr) is the universal homogeneous coherent atomic dI-domain.

Proof: By Theorem 4.3.1, using Theorem 4.3.2 and considering the Remark A.1.1. O

This gives a direct construction of the universal homogeneous coherent atomic dI-
domain, which can be simply obtained as the domain of cliques of Rado’s universal homo-
geneous graph.

4.3.3 The category of generalized tolerance spaces

In this section, we aim at generalizing the notion of tolerance space by substituting the
tolerance relation (which is a binary one) with a more general kind of finitary predicate,
following the line of [Gir87]. As a result, we shall obtain the category of what we call
generalized tolerance spaces, for which we shall prove a generalization of Rado’s theorem,
using analogous number-theoretic constructions.

A generalized tolerance space (or gts for short) 7 = (X, Con) is a set X endowed with
a predicate Con C pg,(X) satisfying the following conditions:

1. for all z € X we have {z} € Con;
2. Con is downward-closed, i.e., if A € Con and B C A then also B € Con.

The predicate Con can be interpreted as a consistency predicate, and we can think of a
usual tolerance space as a special kind of generalized tolerance space where a finite set
is consistent if and only if every pair of elements it contains is in the indistinguishability
relation.

A (gts-)continuous function f : To — 77 is a function f : Xy — X; such that, for all
A € Cong we have f(A) € Cony. In particular, an embedding (of generalized tolerance
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spaces) is an injective function f : Xo — X such that, for all A € pg,(X)), it holds that
A € Cong iff f(A) € Con;.

If Y C X, we denote by 7V the structure (¥, Con"), where Con¥ = Con N pg,(Y)
(the proof that this is indeed a gts is easy, and omitted). Also in this case, the inclusion
map i: 7Y — T is an embedding of generalized tolerance spaces.

We let GTolSp be the category of countable generalized tolerance spaces, with embeddings
as arrows. Also in this case, we have that:

Property 4.3.2 In the category GTolSp every arrow is monic, and an object is finite iff
it has a finite underlying set. Moreover, GTolSp is an algebroidal, incremental category.

Proof: The fact that every arrow is monic follows because GTolSp is a subcategory of
Set containing only injective maps.

Finite objects. First observe that, for every countable gts 7, one can construct an w-
chain (7;, f;) with limit 7 (take any sequence of sets Xy C X; C X5 ... with union X and
such that |X;| < i for every i € w, and let 7; = 7~¢, with f; defined taking the natural
inclusion map). Since the presence of an embedding from 7 to 7" obviously implies that
| X| < |X'|, we immediately have that every finite object must have a finite support. For
the converse, suppose that 7 is finite but have infinite support. Then, take the above
w-chain (7;, f;) whose limit is 7; since 7 can be embedded into itself using the identity,
there must be an embedding of 7 into some finite set, contradicting the hypothesis. Note
that this also proves that every object is the colimit of some w-chain of finite objects.
Limits of w-chains. We must prove that every w-chain of finite generalized tolerance
spaces has a limit. Without loss of generality, take an w-chain (X;, Con;);e,, where Xy C
X1 C Xs.... Now let X = U, X; and Con = U;¢,Con;. The generalized tolerance space
T = (X, Con) is obviously the colimit of the above chain.

Algebroidality. We are just left to show that there are at most countably many non-
isomorphic finite gts’s (which is trivially true), and that there is only a countable number
of embeddings between two finite generalized tolerance spaces (in fact, there exists only a
finite number of them).

Increments. Note that clearly the empty generalized tolerance space is a weakly initial
object. It is immediate to observe that an embedding f : 7 — 7' between finite gts’s is
an increment precisely when |X’'| = | X| + 1. Tt is then easy to see that every embedding
can be decomposed into increments, adding one element at a time. O

We are now ready to prove a generalization of Rado’s theorem, holding for generalized
tolerance spaces. We first need a way of coding finite sets of natural numbers, which we
shall use in our construction:

Lemma 4.3.3 There exist a (recursive) injection ¥ : pg,(w) — w which satisfies the
following:

e U is not surjective;

e for all finite sets A of natural numbers, U(A) is an upper bound for A (in the usual
ordering);

o if A C B (where both sets are finite subsets of w) then U(A) < ¥(B).
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Proof: Let m,mg,m3,... be the sequence of prime numbers (i.e., 1 = 2, m = 3 etc.).
Define ¥ as follows:

k
U({ni <ne<...<ng}) = Hﬂzm
i=1

The function is injective, by the Fundamental Theorem of Arithmetics, and obviously not
surjective. Clearly, for every i, n; < m"" < ¥({n; < n2 < ... < ng}), and so the first
property is true. The second property is also straightforward. O

Now, we define the (so far: candidate) universal homogeneous gts. Let Xy = w, and,
for every A € g, (Xy), let A € Cony iff the following constraints are satisfied:

1. |A|<1lor
2. |A| > 1 and

(a) for all B C A, B € Cony;
(b) the ¥(A\ {max A})-th bit in the unary expansion of max A is “1”.

This is clearly a gts, which we shall denote by Ty; now, using the technique of saturation,
we shall prove that 7y is indeed the universal homogeneous gts.

Theorem 4.3.3 Ty is the universal homogeneous object of the category GTolSp.

Proof: By Property 4.3.2, using Theorem 4.2.2, we just have to prove that 7Ty is stepwise
saturated. Suppose that Y Cg, w and that 7 = (Y U{*}, Con) is a gts with Con* = Con};.
We want to find an z € w\ 'Y such that 7 is isomorphic to 7'; Vial, Now, let C be the set
of elements A of Con" such that A U {*} € Con; clearly C is not empty (it contains the
empty set) and is downward-closed. Now, define:

r = QYY) 4 ) QU(A)
AeC

We must prove that Congu{m} = Con; U{AU{z}: A€}

For the left-to-right inclusion, suppose that A € Cony, and consider AN (Y U {z}) which
equals ANY if z ¢ A, and (ANY)U{z} otherwise. There are two cases. If z ¢ A, then
AN(YU{z}) = ANY € Con};. Suppose, on the contrary, that = € A: we shall prove that
ANY €C. Since A is consistent, every finite subset is. So, in particular (ANY) U {z}
is consistent. Observing that z > 2!tY(Y) > ¥(Y), by Lemma 4.3.3 one gets that z is an
upper bound for Y. So z is the maximum of (ANY) U {z}. By consistency, one has that
either ANY = () (which implies ANY € C, because C is non-empty and downward closed)
or that the (A NY)-th bit of the binary expansion of z is a “1”. But this would mean
that either ¥(ANY) = ¥(Y) + 1 (which is impossible, for the last item of Lemma 4.3.3),
or U(ANY) = T(C) for some C € C, which in turn implies ANY € C, by the injectivity
of W.

If A€ Cony;, then A = CNY for some C € Cony. Observe that z > 21HY(Y) > W(Y),
so z €Y and thus x ¢ A. Take D = C\ {z} (which is consistent, because C is). Then
DNn(Yu{z}) = (DNY)U(DN{z}) = DNY which is in turn equal to (CN{z}¢)NY =
(CNY)n{z}° = An{z}C = 4, so A € Cony, 1",
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Suppose now that A € C; we prove that AU {z} € Congu{x}. The fact that A € C

implies that A = C NY for some C € Cony, and thus also A € Cony. We prove that
AU{z} € Cony (and thus (AU{z})N (Y U{z}) = (AnY)U(An{z}) U (Y Nn{z}) U{z},
which is AU {z}, will be an element of Congu{m}). In order to prove this, just consider
the case A # () (the other is obvious).

e If B C AU{z}, then either z ¢ B and so B € Cony (because B C A), or B = DU{z}
for some D C A. But then z > 2¥(4) > ¥(A) > ¥(D) and so z = max B. Now,
D € C (since D C A) and thus the ¥(D)-th bit of z is “1”. So B € Cony.

e Since z = max(A U {z}), we should prove that the ¥(A)-th bit of z is “1”, which is
true because A € C. O

4.3.4 A universal homogeneous atomic dI-domain

The purpose of this section is to provide a proof of equivalence between the category of
gts’s with embeddings, and the category of atomic dI-domains with stable embedding-
projection pairs as morphisms. A consequence of this result is that we shall have a direct
explicit construction of the universal homogeneous atomic dI-domain (qualitative domain),
by exactly mimicking what we did for the coherent case.

We let AdIDom be the category of countable atomic dI-domains, with stable embed-
ding-projection pairs as morphism. We first define a functor Dom : GTolSp - AdIDom
as follows:

e for each gts 7', we let Dom(7") be the poset whose elements are the consistent subsets
of X, i.e., those sets Y C X such that pg,(Y) C Con; the order is given by inclusion;

o if f: 79 — T1 is an embedding of gts’s, we let Dom(f) = (fe, fp) where, for any two
consistent sets Yy C Xy and Y7 C X, we let fe(Yy) = {f(z),z € Yo} = f(Yp) and
fp(Yl) = {LE S X() : f(.’E) S Yl} = f_l(Yl).

We shall prove that Dom gives an equivalence of categories, by using Theorem A.1.1.
First, we must show that Dom is a well-defined functor.

Lemma 4.3.4 Dom is a functor from the category GTolSp to the category AdIDom.

Proof: We first prove that, for every gts 7, Dom(7) is indeed an atomic dI-domain. Let
D = Dom(T) for a given gts 7. Observe that D is really a poset, and least upper bounds,
when they exist, are simply obtained as set-unions.

(i) Completeness. Let S C D be directed, and Y = US. If A Cg, Y then,
for each z € A, there will be some Y, € S such that € Y;; hence, S being
directed, there will be some Y4 € S such that Y, C Y4 for all z € A. But Y4
is a consistent set, and so A C UzcaY, C Y belongs to Con.

(ii) Minimum element. The minimum element is the empty consistent set.
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(iii) Compact elements. We prove that a consistent set is compact if and only if
it is finite. If A = {x;,... ,z,} is a finite consistent set and A C US for some
directed S C D, then 3Y3,...,Y, € S such that z; € Y; (1 =1,... ,n). But,
by directedness, there exists a Y € S such that Y; CY foralli =1,... ,n,and
so ACY € §5. Conversely, let Y be isolated and infinite. Then we can find
an infinite sequence of finite sets Yy C Y7 C ... such that U;Y; = Y. Each of
them is a consistent set, and S = {Yj,Y1,...} is a directed set with Y = US,
but Y C Y; happens for no 3.

(iv) Algebraicity. Let Y € D; the set K(Y') is the set of finite consistent subsets
of Y. Clearly K(Y) is directed and its least upper bound is Y. This also
proves that D is finitary (a finite set has finitely many subsets).

(v) Consistent completeness. Straightforward.

(vi) Distributivity.  Follows from set-theoretic distributivity, by simply noting
that MA = NA for every non-empty set A.

So far, we have shown that Dom(7") is a distributive Scott domain. For atomicity, clearly:
DA = {{z},z € X}.

and moreover, for every consistent set Y, we have K4(Y) = {{z},2 € Y} and so
UKA(Y) = Ugey{z} =Y.

For the second part, we need to prove that Clique(f) = (fe, fp) is a stable embedding-
projection pair, whenever f : 7o — 71 is an embedding of gts’s. First observe that, if
Y),Y: are consistent subsets of 7o, 71, then f.(Yp), fp(Y1) are also consistent, because of
the definition of embedding. Monotonicity and continuity follow from the fact that f.
and f, are simply obtained as set-extensions of f and f~!. For the property of stable

embedding-projections we have the following; let Y; be a consistent subset of of 7; (for
i=0,1):

e since f is injective, one has f,(fe(Yo)) = f*(f(Yo)) = Yo, as required;

e suppose now that = € fe(f,(Y1)); this means that z = f(y) for some y € f~1(¥1),
i.e.,, z = f(y) and f(y) € Y1, which in turn implies z € Y7. So, f.(fp(Y1)) C Y3;

e for stability, suppose that Y1 C f.(Yp), i.e., Y1 C f(Yp). Then

fe(fp(Yl)) = f(f_l(Yl))'

If z € Yy, then z € f(Yp), so z = f(y) for some y. Thus, y € f (Y1), and so
z = f(y) € f(f 1(Y1)), as required.

So, Dom(f) is a stable embedding-projection pair. O
Moreover, every atomic dI-domain is isomorphic to the domain of cliques of some

generalized tolerance space:

Lemma 4.3.5 Let D be an atomic dI-domain. There exists a generalized tolerance space
T such that Dom(T) = D.
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Proof: Let X = D°® and define A € Con if and only if A 7. Now, consider this tolerance
space, and define:
¢: Dom(X) — D
Y —  uY.

Observe that, if Y is a consistent subset of X, then it is a pairwise compatible subset of
D, and so LIY exists. We must prove that ¢ is an order-isomorphism. Surjectivity of ¢
directly follows from atomicity. For injectivity, suppose ¢(Y) = ¢(Y"), i.e. LY = UY".
Now K4(LY) = K4(UY') and so, using Lemma 3.4.1, Y = Y'. Clearly, if Y C Y’
then LY C UY”, and so ¢ is monotone. For the converse, assume that LY C UY’; then
KA(UY) = KA(UY') and thus (using Lemma 3.4.1) Y C Y. 0

Once more, Dom gives a categorical equivalence, as explained in the following;:

Theorem 4.3.4 The functor Dom is a categorical equivalence between the categories of
GTolSp and AdIDom.

Proof: Using Theorem A.1.1, by Lemmata 4.3.1 and 4.3.5, we just have to prove that
Dom is full and faithful. For faithfulness, let f,g : 79 — 71 be two embeddings such
that Dom(f) = Dom(g). Note that, for all z € Xy, f(z) is the only element of f({z}) =
fe({z}). Since fe = ge, we have f = g as required.

The proof that Dom is full is essentially the same as in Theorem 4.3.2, and therefore
omitted. O

As a corollary, we finally obtain:
Corollary 4.3.2 Dom(Ty) is the universal homogeneous atomic dI-domain.

Proof: By Theorem 4.3.3, using Theorem 4.3.4 and considering the Remark A.1.1. O

This gives a direct construction of the universal homogeneous atomic dI-domain, which
can be simply obtained as the domain of cliques of the generalized universal homogeneous
gts described in the previous section.

4.3.5 A universal construction for event structures having minimum en-
abling

The concepts of tolerance space and generalized tolerance space both deal with the problem
of defining “consistency”: in the first case (in)consistency is given by a binary relation (and
the only consistent sets are those which are cliques of this basic relation), in the second
case it is given by a finitary predicate. It is not difficult to see that these are really special
cases of a much more general kind of structure, where, besides consistency, enabling is
also taken into consideration. These structures, introduced in [Win80], are a well-studied
subject of domain theory, which finds many applications both in denotational semantics
[Dro91, Dro89] (with the aim of obtaining representation theorems for various classes of
domains), and in the theory of concurrency [NPW81, RT91, Win87, BCS93] (where event
structures are a paradigmatic way of representing truly concurrent processes). We shall
later on discuss in more detail the notion of event structure, taking into considerations
different variants of this notion.
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For the purpose of this section, we shall simply introduce the definition of general event
structure and that of event structure with minimum enabling, and provide a universal
homogeneous object for the latter category. We postpone to a later section the problem of
whether this gives also a universal object for the corresponding domain category or not.

An event structure [Win80] is a triple £ = (E, Con, ) where (E, Con) is a generalized
tolerance space® (the elements of E are called “events”), FC Con x E is the enabling
relation satisfying the following “inheritance condition”:

AF e ACBeCon = B I e
A set X C FE is called a configuration (or state) of £ iff
1. X is a consistent set, i.e., pg,(X) C Con;

2. for all z € X there exists a securing chain, i.e., a sequence z1,Z2,... ,Zp = T € X
such that, for every i = 1,... ,n, one has {z;,1 < j <i} F ;.

The set of configurations of £ is denoted by £(£). We use the same symbol to denote the

corresponding poset w.r.t. set-theoretic inclusion*.

An event structure £ has the minimum enabling property (or, shortly, it is a MeES)
iff for every e € E one of the following happens:

1. either no A € Con is such that A F e;

2. or else, if we put pte = NAccon,areA, it happens that . - e (pe is called the minimum
enabling for e); said otherwise, the set {A € Con : A I e} has a minimum element

e-

In other words, either e cannot be enabled in any way, or otherwise there is only one
minimum enabling for it (every other enabling set contains that minimum enabling). This
definition resembles that of stable event structures, but it is not exactly the same, even
though they completely coincides as far as we look at the configuration domains. Rather, it
is similar to the definition of prime event structure [BCS93, NPW81]|, where the minimum
enabling is simply the principal ideal generated by the given event in the causality ordering.

In this section, we shall further generalize our constructions and obtain in this way a
universal homogeneous event structure with minimum enabling. For this purpose, we
define what is an event structure homomorphism and embedding. A homomorphism
of event structures f : & — &; is simply a gts-continuous function f : (Ey, Cong) —
(E1,Cony) such that moreover

VA € CongVe € Ey. Abge — f(A) 1 f(e)

3To be precise, this is not exactly the definition given in [Win80], because here we are requiring that
every singleton is consistent. Of course, this does not harm when considering configurations, because
events which are not themselves consistent will simply never appear in a configuration.

4We postpone the discussion of which kinds of domains can be generated as configuration posets of
event structures; for the time being, we are just interested in their “syntactic” structure.
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We say that f is an embedding iff it is an embedding of the underlying generalized tolerance
spaces and moreover

VA € CongVe € Ey. Atge <— f(A) 1 f(e)

The category of countable MeES’s with embeddings will be denoted by MeES.

Given a MeES £ and a subset Y C E, define £Y to be the structure (Y, ConY, +FY),
where Con" = Con N g, (Y) and FY=F N(Con" x Y). In this case, a little thought is
required to get convinced that £Y is still a MeES:

Lemma 4.3.6 Let £ be a MeES, andY C E. Then £ is a MeES, and if e €Y has an
enabling in EY then pY = .

Proof: The only non-trivial part is the existence of the minimum enabling. By contradic-
tion, suppose that A, B € Con" are such that A ¥ e and B Y e, both in the minimal
way (i.e., no proper subset of A or B enable e), and A # B. Then also A+ e and B e,
so e C AN B CY, thus also y. FY e, which contradicts the fact that A and B enable e
in a minimal way. O

This lemma serves to prove that MeES is an incremental category, with one-point
extensions. Note that, as in the case of (generalized) tolerance spaces, the inclusion
morphism is an embedding of MeES’s.

The main property of the category MeES are listed in the following;:

Property 4.3.3 In the category MeES every arrow is monic, and an object is finite iff
it has a finite event set. Moreover, MeES is an algebroidal, incremental category.

Proof: The proof is analogous to that of Properties 4.3.1 and 4.3.2, using Lemma 4.3.6 for
incrementality. O

We shall now build up the universal homogeneous MeES using the same number-
theoretical techniques developed in the previous sections. Build the event structure & by
letting £y = w, and Cong, Fy defined as follows:

e 3 finite set A C w belongs to Cony if and only if

1. |[A|<1lor
2. |A] > 1and

(a) for all B C A, B € Cony;
(b) the 2¥(A \ {max A})-th bit in the unary expansion of max A is “17;

e Aty eifand only if A € Cony and, letting
ke = min({k : the (2k + 1)-th bit in the binary expansion of e is “1”} U {0}),

we have that U~!(k.) = {B} and B C A.
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The essential idea behind this definition is that each event (number) encodes in its
binary expansion all the information about consistency and enabling; in particular, the
even-position bits are used to encode consistency (just in the same way as we did for gts’s),
while the first odd-position bit is used to encode the minimum enabling set. Note that the
other odd-position bits can be freely set to “1”: this is needed in order to prove saturation,
because we need infinitely many events having the same consistency and enabling proper-
ties to be able to add them at every possible step of the embedding in £y. Moreover, note
that, if no “1” in the binary expansion of e has odd position, or if the first odd-indexed
“1” corresponds to a position which does not code a unique set, then we assume that no
set ever enables e.

Observe that:

Lemma 4.3.7 The structure Ey is an event structure with minimum enabling.

Proof: Only minimum enabling needs a proof. Suppose that there is a set A € Cony such
that A Fy e. This means that U=!(k.) = {B} with B C A. But then B € Cony and
clearly B Fy e. Moreover:

AeCony AN Arye — B C A.

S0 fte = NAeCony,A-yeA = By e as required. O

We are now ready to prove the universality statement:
Theorem 4.3.5 &y is the universal homogeneous object of the category MeES.

Proof: By Property 4.3.3, using Theorem 4.2.2, we just have to prove that £y is stepwise
saturated. This can be restated as follows: let Y Cgq, Ey, A € Cong and C C Cong be
non empty; then, we must find two elements z,y € Xy \ Y such that

Cony "™ = Con}jU{BU{z},B €C}
and the same holds for y, and moreover

oot = BY U{(BU{a},e) s e € Y, B+ e, BU {z} € Cony, 1"}
HPW = Y U{(B,y) : AC B € Cony, "} U
U{(BU{y},e):ecY,BF e, BU{y} € Congu{y}}.
Before going on in this proof, we must explain why this is equivalent to proving the
stepwise-saturation property. The idea is that C represents the set of consistent sets with
which we want to mantain the consistency by adding the new event, while A represents

the minimum enabling set for the new event. As a matter of fact, this holds for y, while
z is a new event with no enabling at all, and we want to be sure that we can still find it.

Existence of y. Take

y = 22+20(Y) | Z 92U(B) | 9l+2W(4)
BeC
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We prove separately the two parts relative to consistency and enabling.

Consistency: left-to-right inclusion. Suppose B € Conﬁu{y}. If BCY, then B € Con},.
(Note that Y > 22+2¥(Y) > @(Y) and so y ¢ Y). Suppose now that y € B. Then
consistency of B implies that (since B\ {y} CY = y = max B) the 2U(B\ {y})-th bit
of y is “1”. This means that B\ {y} € C (by definition of y) and so B € {CU{y},C € C},
as required.

Consistency: right-to-left inclusion. Clearly, Con); = Cony N pgn(y) € Cony N pga(Y U
{y}) = Congu{y}. Now suppose B € C: we prove that BU {y} € Cony. But B€ =
BCY = y=max(BU{y}). So, to prove BU {y} € Cony, we have:

1. if B = (), the result holds trivially;

2. otherwise, we first have to check that the U(B)-th bit of y is “1” (which is true,
becasue B € C); then, let C C B. To check C € Cony, suppose y € C (the other
case is trivial, since B € Cong ). The result is then obvious for similar reasons.

Enabling: left-to-right inclusion. Suppose B I—Eu{y} e. If BCY and e # y, then also
B I—}; e. For the other cases:

1. suppose e = y; then B I—gu{y} y, and so Bty y, hence U~ 1(k,) = {C} and C C B.
But k, = U(A), so U71(k,) = U71(T(A)) = {4} and thus A C B, as required.

2. the remaining case is when y € B and e # y. So B = C U {y} (with C CY) and
B l_}[;u{y} e # y. Suppose that —(C +}; e), and let ¥~!(k,) = {D}. Clearly D C B
but D ¢ C, so necessarily y € D. Thus k., = ¥(D) > y. So in the binary expansion
of e, there is a bit “1” in a position at least 2y + 1. Thus e > 217, Yet e € Y and
s0 e < U(Y); so necessarily 2172 < T(Y). But y > 22+2¥(Y) go 2142y > 91+27+2¥(")
which is greater than ¥U(Y'). Thus, by contradiction, we have C Y e.

Enabling: right-to-left inclusion. Note that Y, equals Fy N(pan(Y) x V) which is included
in Fy N(paa (Y U{y}) x (Y U{y})) which equals '_}[;u{y}. For the second case, suppose that
Be Congu{y} and A C B. We must prove that B |_}[;U{y} 1y, i.e., that B Fy y. To do this,
we must have that ¥~!(k,) = {D} with D C B. But k, = ¥(4), so U !(k,) = {4}, and
A C B by hypothesis. For the last case, suppose that B I—}[j e and BU {y} € Congu{y}.
Then B U {y} Flgu{y} e as required.

Existence of x. Let ¢ € U(pan(A)) (this exists, because ¥ is not surjective). Define:

o = 22+2%(Y) 4 z 92¥(B) | ol+2¢,
BecC

The proof for consistency is exactly the same as for y, and omitted.

Enabling: left-to-right inclusion. Suppose B l_gu{x} e. f BCY and e # z, then B I—E e.

So, consider the other cases:

1. if e = z, then B -y x which implies that U~!(k;) = {D} with D C B. But k; = ¢
and U~!(q) = 0 by definition;
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2. suppose that z € B and e # z. Let C = B\ {z} € Con};. We must show that C Iy e.
Suppose that ~(C t e) but By e. Then U~!(k,) = {D} with D C Bbut D ¢ C.
So z € D, and thus k. = ¥(D) > z. So, in the binary expansion of e there is a
bit “1” in a position which is at least 2z + 1, i.e., e > 21727, But e € Y and so
e > T(Y); so, necessarily, 21727 > U(Y). But z > 22+2¥(Y) g 21420 > gl+2°F2¥(")
which is greater that ¥(Y'). Thus, by contradiction, we have C F}; e.

Enabling: right-to-left inclusion. It is straightforward to check that I—)[;g—gu{m}. Now,
suppose that B Y e, with e € Y and BU {z} € Congu{w}. Then also B U {z} |_1[;U{z} e
as required. O

A question arises naturally, whether we can use this construction also for obtaining
a universal homogeneous domain of some kind, by proving an equivalence between the
category MeES and a domain category. We shall give a (negative) answer to this question
in the next section.

4.3.6 MeES’s and the category of dI-domains

In this section, we shall provide a representation theorem for the class of dI-domains, by
proving that the domain of configurations of a MeES is always a dI-domain, and conversely
every dI-domain can be obtained as the domain of configurations of such a structure. The
proof is quite standard, and similar, for the techniques used, to those presented for example
in [Win80] or [NPW81].

We first prove the easy part:

Theorem 4.3.6 For every MeES &, the poset L(E) (w.r.t. inclusion ordering) is a dI-
domain.

Proof: (First part) Let D = L(£); we first prove that D is a cpo. Clearly D contains a
minimum element, i.e., the empty configuration . Suppose now that S C D is a directed
set of configurations, and let X = US: we must show that X is also a configuration. If
A Cgn X, say A = {z1,...,2z,}, then each z; is included in some configuration of S: by
directedness of S, there must be some Y € S such that A C Y, and so A € Con. Now,
suppose that e € X; then e € Y for some Y € S, and so Y contains a securing chain
e1,€e9,... ,e, = e for e, and this is also a securing chain for e in X.

For consistent completeness, let S C D be an upper-bounded set of configurations: this
means that there exists a configuration X such that US C X. Now, let Y = US: we
shall prove that Y is a configuration, which is clearly the least upper bound for Y. Every
finite subset of Y is also a finite subset of X, and so it must be consistent. Moreover,
if e € Y, then e belongs to some configuration of S, and the same configuration must
therefore contain a securing chain for e: this is also a securing chain for e in Y. Thus,
finally, Y € D.

Now, we want to prove that a configuration is compact if and only if it is finite. It is
immediate to see that every finite configuration is compact. For the converse, suppose
that X is compact; we build a sequence Xy C X7 C Xy C ... of subsets of X as follows:

e put Xo = {;
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e if X = X then let X;,1 = Xj; otherwise, choose an element e € X \ Xy, and let
€1,-.-,en = e be a securing chain of e in X. Let X;,1 = Xy U{e1,... ,en}-

Note that each X; is a finite configuration, and moreover at each step the cardinality is
strictly increased (unless X is finite, in which case the sequence constantly equals X from
a certain index on). Since X = Uj;e, X;, by compactness of X, we must have X C X;, and
so X must be finite.

For each configuration X, the set K(X) is directed (the union of two finite compatible
configurations is a finite configuration), and its least upper bound is X (every event
appears in some finite subconfiguration of X'). So w-algebraicity is guaranteed. Also, D is
finitary, because a finite configuration can have only finitely many subconfigurations (in
fact: subsets).

So far, we have proved that D is a finitary Scott domain, where least upper bounds of
directed (compatible) sets are obtained simply as unions, and the compact elements are
just the finite configurations.

We still have to prove distributivity. Before proceeding in the proof, we need some
technical definitions and lemmata. In the rest of this subsection, we assume that &£ is a
MeES.

A safe sequence for an event e € E is a sequence v = (e1,e2,... ,ex) where e = e and,
for all 4 = 1,... ,k it holds that {e1,... ,e;_1} F e;. We let ev(y) = {e1,e2,... ,ex} be
the set of events occurring in the sequence . If A C E and v = (e1,e2,... ,¢) is a safe

sequence, we let v [ A be the subsequence of v built by taking the only elements of
which belong to A, in their order.

Lemma 4.3.8 Let I' be a set of safe sequences for an event e € E, and let ev(I') =
Nyerev(y). For each v €T, the sequence v [ ev(T') is a safe sequence for e.

Proof: Suppose that v = (e1,e2,... ,e, = e); since e € ev(vy) for all v € T', we have that
ecev(l'). Sovy [ev(I') = (e},... ,e},) will be such that e}, = e. Now, we must prove that
{€,...,ei_1} F el. Clearly, since e} € ev(y), every sequence § of I" contains e, somewhere,

and so there is a subset of its event set enabling €}, i.e., there is some x5 C ev(d) such that
z5 F e}. Consider z = Nyerzs: this is clearly a subset of ev(I'), and moreover Ihe, C z:
so, z F e}. But {e},... ,e,_;} = = and so we are done. O

We can thus obtain the following:

Corollary 4.3.3 Let e € E be an event such that there is a configuration X € L(E) with
e € X. Define:
[e] =nN{X € L(£):e€ X}.

We have that [e] € L(E).
Proof: Consistency is straightforward. For enabling, let ¢/ € [e]. Since ¢/ € X for all
X € L(&) with e € X, € has a safe sequence in X. Using the result of Lemma 4.3.8,

we can find a securing sequence for €' also in [e] (by taking T' to be the set of all safe
sequences corresponding to the various X in the set). O

Moreover:
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Lemma 4.3.9 The set of complete primes of L(E) is precisely the set of configurations of
the form
[e] =N{X € L(£) :e € X}

where the latter set is non-empty.

Proof: Suppose first that S C £(€) is a compatible set and [e] C US. Then e € [e] C US,
so e € X for some X € S. But then also [e] C X € S.

For the converse, suppose that X is a complete prime. Take the set A = {[e],e € X}: this
is a compatible set of configurations, and X = UA. But then X C [e] for some e € X,
and so X = [e]| for some event e. O

So, finally, we obtain that:

Proof of Theorem 4.8.6 (continued): If X is a configuration, then clearly X = Ugcx[e].
So L(€) is prime algebraic and thus, by Theorem 3.4.1, £(£) is a dI-domain. O

Now, the converse of Theorem 4.3.6 can be obtained by taking into consideration the
class of prime event structures, in the sense of [Win87]. A (generalized®) prime event
structure (Winskel [Win87]) is a structure £ = (E, Con, <) where E and Con are like in
the definition of a MeES, and moreover < is a partial order on E such that:

1. foralle € E, the set | e = {¢ € E: ¢’ < e} is finite;
2. if X € Con and there exists ¢’ € X such that e < ¢’ then X U {e} € Con.

We let LPR(E) be the set of subsets X C E such that pg,(X) C Con and | e C X for all
e € X. The elements of LFR(&) are called the configurations of the prime event structure

E. It is known that:

Theorem 4.3.7 (Winskel [Win87]) For every dI-domain D, there ezists a (general-
ized) prime event structure EYR(D) such that LER(EFR(D)) = D. O

So, now we have:
Theorem 4.3.8 For every dI-domain D, there is a MeES £(D) such that L(E(D)) = D.

Proof: Consider the generalized prime event structure EY®(D) = (E, Con, <) obtained as
in Theorem 4.3.7. Now, for each X € Con and e € E, define X F e if and only if
le\{e} C X;let £(D) = (E,Con,t). We first prove that £(D) is a MeES. Suppose that
e is somehow enabled: then, there is X € Con with | e C X, but thus also | e € Con, and
thus clearly | e = (NxrX)U{e}. So ue =} e\ {e} F e, as required.

Now, it is immediate to verify that £(£(D)) = LFR(EFPR(D)) = D. O

To summarize, we can say that the domains of configurations of MeES’s are precisely
(up to isomorphism) all and only the dI-domains. In other words, if dIDom is the category

5Later on, we will have to do with other kinds of prime event structures, with binary conflict.
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of (countable) dI-domains, with stable embedding-projection pairs as morphisms, we have
a map

L : Obj(MeES) — Obj(dIDom)

with the property that every object of dIDom is isomorphic to some object in the image
of L.

In order to prove (or disprove) the categorical equivalence, we must extend L to a
functor: we do this as follows. Suppose that f : & — &1 is an embedding of MeES’s;
we let L(f) = (fe, fp) where fo(X) = f(X) and f,(Y) = f~1(Y), for all X € L(&) and
Y € ﬁ(gl)

Property 4.3.4 The above definition extends the map L to a functor from the category
MeES to the category dI Dom.

Proof: The map is well-defined; in fact, suppose first that X € L£(&)). We prove that
f(X) € L(&): if A Cgn f(X), then A = f(B) for some B Cg, X, and so A € Conj.
Moreover, if e1,... ,ex is a safe sequence in X, then so is f(e1),..., f(ex) in f(X). (The
proof for f,, is similar). It is clear that (fe, fp) is an embedding-projection pair. For
stability, suppose that Y C f.(X) = f(X). Then, take only those elements z of X with
f(z) € Y, ie., consider X' = X N f }(Y). We must prove that X’ is a configuration,
which is a consequence of Lemma, 4.3.8. O

So, L is a functor; it is also a full functor, as one can prove with much the same
techniques as we adopted for the case of (generalized) tolerance spaces (Theorems 4.3.2
and 4.3.4). But, what about faithfulness?

Faithfulness can be disproved in a very easy way. For any two event structures with
minimum enabling £ and &', define nullify(€, £’) as the structure obtained as follows:

e its events are the (disjoint) union of E and E’, plus a special event x;
e consistency is given by the union of the two predicates;

e the enabling for events of E is unchanged; every event of E’ has the same enablings
as before, but with * required to happen, and x itself has no enabling at all.

In practice, nullify(&, ") is a structure with the same behaviour (configurations) as £, but
with a copy of the structure £ in it (which does not generate any configuration, though,
because of the presence of the event *, which acts as a sort of “obstruction”). Clearly
L(nullify(€,£")) =2 L(€) (and this is really an equality). If f : & — £] is an embedding of
MeES’s, we can extend this to an embedding f : nullify (£, £}) — nullify(€, £}) by taking f
to be the identity on EU {*}. Thus, £(f) : £L(E) — L(E) is the identity always, regardless
of how f is chosen. This proves not only that L is not faithful, but also that it is not

faithful even for a chosen object in the image of the functor. Thus, to summarize:

Theorem 4.3.9 L : MeES — dIDom is a full functor, and every object of dIDom is
isomorphic to L(E) for some MeES E. Yet, L is not faithfull, and thus not a categorical
equivalence. O
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Nonetheless:
Corollary 4.3.4 L(Ey) is a universal object of dIDom.

Proof: For all dI-domains D, consider the following diagram:

L(Ey) &
g Tﬁ(fu) Tfu
D% L(£(D)) £(D)

where @ is the isomorphism between D and L£(£(D)), whose existence is insured by The-
orem 4.3.8, and fy : £(D) — &y exists by the universality property of £y (Theorem 4.3.5).
Then, L(fy) o ¢ gives the required arrow. O

Homogeneity of L£(&y) is not guaranteed, though: it would be interesting to know
whether £(&y) is also homogeneous (i.e., if it is isomorphic to the one built in [Dro91}),
but this is quite unlikely, because of the way we used to built the homogeneous object in
the category &.

The problem, here, is that our techniques for the construction of universal homogeneous
representations are essentially based on the degree of freedom allowed in building the
structure, and this, on the other side, gives structures which are highly non-canonical,
in the sense that they actually contain spurious and redundant information. This is
precisely the reason for which we have no categorical equivalence; of course, one could
think to bypass this problem by imposing “more structure” on the representation side, for
example, by giving more constraints in the definition of a MeES, but in that way, even
though categorical equivalence is obtained, we have too much structure to be taken into
account when building the universal homogeneous object.

4.4 An application to the solution of recursive domain equa-
tions

In this section, we shall discuss briefly how one can use the universality results so far
obtained in order to solve recursive domain equations. We will not enter into the details
of the constructions, and limit ourselves to the very simple case of atomic coherent dI-
domains, even though the techniques we explain are suitable to be applied, with slight
variations, to all the categories described above.

4.4.1 Domain equations

Before starting, we need introduce the problem, and we do this without any claim of
precision or completeness: the interested reader can obtain much more information about
domain equations and other possible solution techniques by consulting, e.g., [GS90].
Given a suitable category of domains, one can define many operations (i.e., functors) on
the category, each corresponding to a particular semantic construction. For example, given
two domains Dy and D, one can consider the new domain Dy X D7, whose elements are
just pairs of elements (from Dy and D;) ordered componentwise. This simply corresponds
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to describing an “object” made up of two components, one of “type” Dy and the other of
“type” D1, and seems to be the natural semantic counterpart of a typical programming
language constructor like record in Pascal, or struct in C; if the category considered is
closed under such products, then X is a functor on the category, and one can for example
wonder whether there is some domain D such that D =D x D.

This is a recursive domain equation, and we would like to find a (minimal) solution for
it. The problem of finding solutions to recursive domain equations (expressed in suitable
categories) is of primary importance in the field of denotational semantics, where each
such equation corresponds to the actual definition of a recursive data-type (e.g., trees,
lists or such).

4.4.2 Representing domains as points of the universal domain

In this section we shall explain how one can try to use the universality result for solving
recursive domain equations, by representing each domain as a point in the universal do-
main, and each operation by a (hopefully simple) continuous endofunction of the universal
domain.

Before doing this, we prove that the category CAdIDom is closed under the operation
of stable exponentiation. With this purpose in mind, let us first rephrase Lemma 3.2.1 in
the case of atomic coherent dI-domains (induced by tolerance spaces).

Lemma 4.4.1 Let f € [Clique(Dy) —5 Clique(D1)], C be a clique of Dy and y € f(C).
Then, there is a finite clique C' Cgn C such that y € f(C') and, if C" Cqn C is such that
y € f(C"), then C' C C".

Proof: Since {y} C f(C), use Lemma 3.2.1 and let C' = M(f,C,{y}). We then have
C' CC,ye f(C"). Moreover, if C" Cg, C and y € f(C"), then necessarily C' C C". O

Now, for any two tolerance spaces Ty, 71, let T = [To —s T1] be the tolerance space
defined as follows:

e the support set is X = {(C,y) : C is a finite clique of Ty, y € X1 };

e we define (C,y) co (C',y') if and only if, whenever C U C" is a clique, the following
hold:

1. ycoy';
2. ify =9 then C = C".

What we want to prove is that this new space is exactly the representation of the stable
function space. To do this, let us introduce another definition.

If f € [Clique(7y) —s Clique(771)], define its trace Tr(f) as the set of all those pairs
(C,y) where C is a finite clique of Ty, y € f(C) and, whenever C' C C with y € f(C"), it
happens that C' = C'.

First, notice that Tr(f) is always a clique of [Typ —s 71|, as explained by:

Lemma 4.4.2 The set Tr(f) is a clique of [To —s T1]-
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Proof: Let (C,y),(C',y') € Tr(f) and suppose that C U’ is a clique. Then, by monoton-
icity of f, f(C)YU f(C") C f(CUC"). So y,y' € f(CUC") and thus y coy’. Moreover, if
y = 7/, then, by definition of Tr(f), neither C C C’ nor C' C C hold. By stability, since
C 1 C', we have f(CNC') = F(C) N F(C"): but y € F(C) N F(C"), and so y € F(CNC),

which contradicts minimality. O

The map Tr has two important properties, expressed in the following lemmata:

Lemma 4.4.3 The map Tr : [Clique(Ty) —s Clique(T1)] — Clique([To —s Ti1]) is inject-
e.

Proof: Suppose Tr(f) = Tr(g), and let D be a clique of 7p and y € f(D). Then, by Lemma
4.4.1, there is a finite clique C' C D such that y € f(C) and y & f(C") for all C' C C.
So (C,y) € Tr(f) = Tr(g); but this means that y € g(C') and thus, by monotonicity of g,
also y € g(D). Thus, finally, f(D) = g(D). O

Lemma 4.4.4 The map Tr is surjective.

Proof: Let F be a clique of [Ty —5 T1]: we must build a stable function f : Clique(7y) —
Clique(77) such that Tr(f) = F. Let, for every clique D of Ty

f(D)={ye X, :(C,y) € F for some C Cg, D}.

Trivially f is monotone; for continuity, let S be a directed set of cliques; y € f(US) if
and only if (C,y) € F for some C Cg, US, which happens, by directedness, if and only if
C Cgn D for some D € S. This is equivalent to saying that y € Uf(S), as required.

For stability, suppose that D 1 D’, and let y € f(D) N f(D'). This means that there
are some C Cg, D and C' Cg, D' with (C,y),(C",y') € F. But C U ' is a clique,
and so necessarily C = C'. Thus C Cg, DN D' and (C,y) € F, which in turn implies
y € f(DND').

Now, suppose that (C,y) € F; then clearly y € f(C): note that we cannot have y €
f(C") for some C' C C, because otherwise there would be some finite C"” C C with
(C",y),(C,y) € F (contradicting the fact that F is a clique). So (C,y) € Tr(f).
Conversely, if (C,y) € Tr(f), then y € f(C), and y ¢ f(C') for all C' C C. This means
that there is some C” C C with (C",y) € F but this is not true for any C” C C. So
(C,y) € F, as required. O

As a matter of fact, Tr is actually an (order-)isomorphism:

Theorem 4.4.1 The function Tr : [Clique(Ty) —s Clique(T1)] — Clique([To —s T1]) is an
isomorphism.

Proof: The map Tr is well-defined, as proved in Lemma, 4.4.2; moreover, it is a bijection
(by Lemmata 4.4.3 and 4.4.4).

If f C g then suppose (C,y) € Tr(f): this means that y € f(C) and y & f(C') for any
C' ¢ C. We know that f(C) = f(C)Ng(C), and so y € g(C). Moreover, suppose that
C' is such that C' C C and y € g(C"): then f(C') = f(C)Ng(C') and so y € f(C"): this
implies C' = C. So (C,y) € Tr(g).
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Now, for the converse, consider two cliques C' C C € Clique(Dy). We must prove that
f(ch = f(Cyng(C. Ity € f(C"), by Lemma 4.4.1, there is C"” Cg, C' such that
y € f(C") and C" is minimal with this property. So (C",y) € Tr(f) C Tr(g); thus
y € g(C") which implies by monotonicity that y € g(C"). Also y € f(C) by monotonicity,
and so y € f(C)Ng(C"). Conversely, if y € f(C) N g(C"), then by Lemma 4.4.1, there is
a minimal D Cg, C with y € f(D), and a minimal D’ Cg, C' such that y € g(D'). Then
(D,y) € Tr(f) C Tr(g) and (D',y') € Tr(g). But DUD' C CUC’ C C, which is a clique:
since Tr(g) is a clique of [Top —5 T1], we must have D = D'. Thus (D', y) € Tr(f), and so
y € f(D") which implies, by monotonicity, y € f(C"). O

This in particular says that the stable function space [Dy —s D] is a coherent dI-
domain, whenever Dy and D; are such.

At this point, we have paved our way towards the possibility of coding each coherent
atomic dI-domain as a point of the universal domain Dg = Clique(7g). In fact, consider
any coherent atomic dI-domain D; by the universality property, there will be a stable
embedding-projection pair (e, p) : D — Dy which in a sense “represents” D as a subdomain
of the universal domain. Now, using Lemma, 3.3.1, we know that e and p are both stable,
and thus (since the composition of stable functions is also stable) 7p = eop: Dg — Dr
is a stable function. But then np € [Dr —s Dr|, and [Dr —; Dg] is also a coherent
atomic dI-domain, as a consequence of Theorem 4.4.1, and so can be somehow embedded
into Dg, by a pair (e_,,,p—,) : [Dr —s Dr] — Dgr. Thus e_,, (7p) is a point of Dg which
faithfully represents the domain D.

At this point, one can try to represent each operation of relevance as an endofunction
of Dg, and solve domain equations not up to isomorphism in the category CAdIDom, but
up to equality inside the domain Dg. We do not deepen this technique any further, but just
observe that this “encoding/decoding” allows one to use standard domain-theoretic results
like Knaster-Tarski’s Theorem for obtaining solutions to recursive domain equations.

4.4.3 A more direct approach — Solution of D=D a1

In this last paragraph, we just suggest how one can use a more direct approach to the solu-
tion of recursive domain equations, by exploiting the special number-theoretic properties
used for building up the universal domain.

In order to do this, we consider a toy example which involves the usage of a special
domain operation, called coalesced sum. The coalesced sum of two domaind Dy and D; is
the domain D = Dy @ D; defined as follows:

o D= ((Do\{Lo})x{0}) U ((Di\{Li}) x{1}) U{L}

e t C ¢ if and only if (¢t = (z,0), t' = (z/,0) and z Ty z’) or (¢t = (y, 1), ¢’ = (¢/,1) and
yCiy)ort= 1.

This operation is sketched in Fig. 4.1: in practice, the coalesced sum corresponds simply
to the disjoint union of the two domains, modulo the identification of the two bottom
elements.

Now, let I the Sierpinski space, i.e., the (unique) two-point domain I = {1, T}. How
could we solve the recursive domain equation D = D @ I in the category CAdIDom?
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Figure 4.1: The coalesced sum of two domains.

One way to do this is the following: first, observe that every coherent atomic dI-domain
D can be somehow represented as the domain of cliques of some tolerance space (i.e.,
D = Clique(7)), and the latter can be embedded in the universal Rado’s tolerance space.
Thus, we can associate to each domain a set of positive integers, corresponding to the
points of Rado’s tolerance space to which the elements of 7 are mapped by the embedding.
Now, if we find an operation among sets of integers which mimicks the construction of
interest (in our case: the coalesced sum), we can use it to solve the domain equation.

To see how this can work, consider the function F : p(w) X gfin(w) — p(w) defined as
follows: f 0 < 21 < z2 < ... <y, and 0 € A, we define

F(A {z1,... ,z,}) = AU{a},... 2.},

where, for all k =1,... ,n, letting I = {i =1,... ,k —1: the z;-th bit of zx is a 1}, we

define
‘Z‘;c _ (xk _ Z 2$i)2maXA + Z 2:5;'
i€l icly,
The point here is that this function represents the coalesced sum of two coherent atomic
dI-domains, in the precise sense we are now going to explain. First, we need a definition
and two lemmata. For two given tolerance spaces Ty, 71, we define their disjoint union
To + T1 as that tolerance space whose underlying set is just the disjoint union of the sets
Xy and X7, and where tolerance is the disjoint union of the two tolerance relations.
First note that

Lemma 4.4.5 Let Ty, T1 be two tolerance spaces. Then Clique(Ty + T1) = Clique(Ty) @
Clique(T1).

Proof: A clique of Ty + 71 cannot contain elements coming from the two different compon-
ents (because they are not in the tolerance relation). Thus, either it is a clique of 7y or a
clique of 77, unless it is the empty clique. O

As a matter of fact:
Lemma 4.4.6 Let 0 ¢ A Cw and B Cg, w \ {0}. Then T}f(A’B) ~ T4 + T8,

Proof: Let B = {1 < z2 < ... < x}: we prove the statement by induction on k. If k = 0,
then F'(A,B) = A and we have nothing to prove. Suppose now that B = {z; < ... <

zp < Zp41) and let C = B\ {zg+1}- By induction hypothesis, Tff(A’C) ~ 74 + T . Now

F(A,B) = F(A,C) U{z = (zg41 — »_ 27)2m>4 4 3~ gf}.

ielk+1 iEIk+1
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The element z is not connected to any element of the A-component, since 2™2* 4 is strictly
greater than any element of A, and so is any z}; moreover, z is connected to z} in the

C-component if and only if ¢ € I, i.e., iff x5, was connected to z;. O

So, to summarize:
Theorem 4.4.2 Let 0 ¢ A, B C w, with B finite. Then:
Clique(T}f(A’B)) = Clique(T§') ® Clique(TiP).

Proof: A consequence of Lemmata 4.4.5 and 4.4.6. O

Note that, in the very special case when B is a singleton, the function F' can be defined
by
F(A, {z}) = AU {z . 2max4}.

Now, we can solve our domain equation using the following easy observation: the
Sierpinski space can be represented by I = Clique(T}il}) (because a one-point tolerance
space has exactly two cliques). Thus, looking for the solution of the domain equation
D = D@, is equivalent to finding a subset A of w such that Clique(7%!) = Clique(75') ®1
7—}5 (4,41}

In other words, we have reduced our problem to solving the recursive equation A =
F(A,{1}) on the domain p(w). Now, using the fixed-point theorem, we obtain the follow-
ing increasing chain:

which, by the previous theorem, is isomorphic to

Ay = 0

Ay F(Ao, {1}) = {1}

Ay F(A{1}) = {1,2%}
A3 = F(A4,{1}) ={1,2%,2%}

A = {20:i<k}.

Thus, A is the set of all powers of two, and 7}{‘ is clearly the (unique, up to isomorphism)
countable totally disconnected tolerance space. Finally, the solution D = Clique(Tff) is
simply the flat domain w, of natural numbers shown in Fig. 4.2 (because the cliques of
the countable totally disconnected tolerance space are just the empty clique and all the
singleton sets).

4.5 An alternative universal construction

In this section, we shall provide an alternative universal construction for the category of
coherent dI-domains, based on the concepts of trace automata and trace language. This
construction was presented in [BCS93], and requires some technical background which we
shall introduce next.
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0 1 2 3 4 5 6

Figure 4.2: The flat domain w; of natural numbers, which is the solution of D =D 1
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Figure 4.3: The commutativity condition

4.5.1 Trace automata and computation sequences

The notion of concurrent automaton we shall use is a particular instance of the trace
automata in the sense of Stark [Sta89b], although we do not require the existence of e-
transitions. Our machines, the full trace automata, are slight variations of the asynchron-
ous transition systems of Shields [Shi85] and Bednarczyk [Bed88]. Besides the intrinsic
interest of this model in the field of concurrency theory, we shall observe later that there
is an exact correspondence between the set of computations of such an automaton and the
set of configurations of a prime event structure, which can be extended to an isomorphism
of partial orders when prefix ordering is defined on computations. In order to maintain
this correspondence it is necessary to admit countable alphabets and sets of states for
automata. Furthermore, we shall interpret symbols of the alphabets as “events”, instead
of “actions”, because this confusion is harmless in the present context.

A trace automaton is a structure A = (E,||g,Q, T, *), where E is a countable set of
events, ||g is an irreflexive and symmetric relation over E (the concurrency relation), Q is
a set of states with x € Q (the initial state), and T C (Q x E X Q) is a set of transitions.
A transition of the form ¢t = (g,a,r) will also be written as ¢ : ¢ = 7, and for such a
transition we let dom(t) = ¢, cod(¢) = r and event(¢) = a. These data are required to
satisfy the following conditions:

Disambiguation If ¢ % r,q % ¢/ then r = 7/;

Commutativity If ¢ 5 r, ¢ b s and al|gb, then Ip € Q. r LN p, S — p, as in the diagram
of Fig. 4.3.

A trace automaton is full if it satisfies:

Fullness if ¢ % r,r LN p and a| b then g b s for some state s € Q, as in the diagram of
Fig. 4.4.
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Figure 4.4: The fullness condition
r r
AN N
p — q p
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Figure 4.5: An equivalent version of the fullness condition

Observe that the state s whose existence is guaranteed by the fullness condition is uniquely
determined by disambiguation and, by commutativity, we can equivalently represent the
condition as in the diagram of Fig. 4.5.

The disambiguation condition corresponds to an assumption of determinism, even if the
automata are not completely specified. Also, there is no notion of final state, so accept-
ance in this context is determined by maximality of computation sequences. Intuitively,
fullness amounts to requiring that computation sequences of a trace automaton represent
all possible interleaving of events in a run of a concurrent process.

A (finite) computation sequence of an automaton® A = (E, ||z, Q, T, *) is either empty
or else a sequence 7y = t;...t, of transitions of A such that dom(¢;1) = cod(t;) for
i=1,... ,n—1. We define dom(y) = dom(¢;) and cod(y) = cod(t,), and the length of
this computation sequence is |y| = n. The set of finite computation sequences of A having
* as domain is denoted by CS°(.A). We also have infinite computation sequences of A, of
the form v = t1tot3...%; ..., and the set of finite and infinite computation sequences of A
whose domain is the initial state will be denoted by CS(A). Two computation sequences
v,d are composable when cod(y) = dom(¢), and their composition is the computation
sequence vd. We say that -y is a prefix of §, and write v < §, when there is a computation
sequence ¢ such that v¢ = 6.

Observe that the disambiguation condition determines a bijective correspondence be-
tween computation sequences and the finite or infinite words obtained by concatenating
the symbols labelling their transitions. We shall exploit this fact and often represent
computation sequences by the corresponding words.

As a better description of the partial order of events in a distributed environment, it
is possible to identify sequences up to permutations of adjacent symbols whenever they
represent concurrent actions. Thus we are naturally led to consider traces as descriptions
of concurrent computations, and indeed full trace automata act as acceptors for a special

SThroughout this section, the word “automaton” is always used to mean “trace automaton”.
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class of trace languages (in the sense of Mazurkiewicz [Maz77]; see also [DR95] for a survey
on the subject).

A concurrent alphabet is a pair > = (A, ]|4), where A is a countable set and || is an
irreflexive and symmetric relation over A. The trace monoid ©(2) is the quotient of A*
modulo the smallest congruence ~ 4 containing all pairs (ab, ba) for a||4b. An element of
O() is called a trace. A subset of O(2) is called a trace language.

By Alph([w]), for a trace [w] over 2, we denote the set of symbols occurring in any
of its representatives w € A*. The set of traces can be partially ordered by the prefix
relation: for s,t € O(A):

s <g tiff Ju € OA). su =t.

Obviously [e], where € denotes the empty word, is the least element of the partially
ordered set ©(2).

We associate in a natural way to each computation sequence v = t¢;...%, the trace
tr(y) = [event(¢1)...event(t,)]. This mapping induces an equivalence relation on com-
putation sequences, which coincides with the “permutation equivalence” defined by Stark
[Sta89b], as well as a notion of prefix.

Given 7,6 € CS°(A), let v ~ ¢ whenever tr(y) = tr(d), and in this case say that two
sequences v, d are equivalent up to permutations. The relation X over CS°(A) (prefiz up
to permutations) is the transitive closure of < U ~, and the partially ordered set D°(.A)
is defined to be CS°(.A)/ ~, ordered by 3.

Observe that, if A is a full automaton, the function
word : CS°(A) — | J{tr(y),y € CS°(A)},
defined by the mapping
y=1t1...t, —> event(t1)...event(t,)

is bijective. In other words, every representative of the trace of a finite computation
sequence 7y is the word associated to some computation sequence § € CS°(A), where
vy~ 4.

4.5.2 Prime event structures and coherent dI-domains

Coherent dI-domains, introduced in Chapter 3, also arise as domains of configurations of
prime event structures with a binary conflict relation (see [Win91)).

A prime event structure [Win80] is a triple £ = (E, <,#), where E is a countable set
(of “events”), < is a partial ordering on the events (the “causality relation”) and # is a
binary irreflexive and symmetric relation on the events (the “conflict” relation) satisfying:

e for all e € E, the set | e = {¢/, e’ < e} is finite;
e if e#te’ and e’ < €, then e#te.

Note that this is a special instance of the definition of event structure where conflict is
specified by a binary relation, and enabling is given by a partial order.

If £ = (E,<,#) is a prime event structure, we can associate to it the poset L£(&)
consisting of its configurations (ordered by inclusion). These are the subsets z of E such
that
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e for e, € €z, ~(e#e);
e ifeczand e <ethene €z.

More precisely, we have the following representation theorem which combines results of
Nielsen, Plotkin and Winskel [NPW81] and Winskel [Win87] (see also [BB95] for another
representation theorem in terms of special causally labelled trees):

Theorem 4.5.1 For every prime event structure &, the poset L(E) is a coherent dI-
domain. Moreover, every coherent dI-domain D is isomorphic to the domain of con-
figurations of a prime event structure (D) = (Ep, <, #). O

Observe that an event e € E of a prime event structure £ can be mapped to the config-
uration | e = {€’ € E, ¢’ < e}, and that configurations of this form can be characterized
order-theoretically as the complete primes of L(£).

For an arbitrary coherent dI-domain D we define the prime event structure £(D) =
(Ep, <, #) by taking Ep as the set Pr(D) of complete primes of D, < as the restriction of
the ordering on D to Pr(D) and setting e#te’ if and only if =(e 1 €’). Then £(D) satisfies
L(E(D))) =2 D.

4.5.3 Full trace automata and coherent dI-domains

There is a well known representation theory that relates categories of domains to other
structures of a “syntactical” nature; some examples have been presented in the first sec-
tions of this Chapter. More examples of this theory are the equivalence of domains with
information systems (Scott [Sco82]), of concrete domains with the information matrices
of Kahn and Plotkin [KP78] (also called concrete data structures in Curien [Cur86]), and
the representation already mentioned of coherent dI-domains as families of configurations
of a prime event structure.

In this section we examine the connections between classes of distributive domains and
concurrent automata, providing alternative representation results for these domains. This
research direction was initiated by Shields [Shi82], Bednarczyk [Bed88], Stark [Sta89a]
(whose trace automata exactly correspond to the more general kind of event structures
presented in [Win87]), and has been further developed in [Dro90].

The two main examples of dI-domains for the purpose of the present section are the
domain of all the finite and infinite traces over a concurrent alphabet 2 ordered by prefix,
and the domain of finite and infinite computations of a full trace automaton. It turns out
that every coherent dI-domain can be represented as the domain of computations of an
automaton of this kind, providing an alternative representation for this class of domains.
For a different proof of this result see [Win91], where it is attributed to Bednarczyk
[Bed88]. The systematic use of properties of embedding-projection pairs in our proofs will
turn out to be useful in proving the universality of the coherent dI-domain constructed in
the next subsection.

Let £ = (E, <, #) be a prime event structure. The finite configurations of £ form a set
L°(€) whose properties will be used in the construction of a full trace automaton A(D)
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from (the event structure £(D) associated with) a coherent dI-domain D. Indeed, given
any prime event structure £, define an automaton

A() = (E, ||, QE,TE, *E)

having as events just the events of £ with the concurrency relation determined by the
clause
e||ge’ if and only if =(e <€) A (e’ <e) A —(e#e).

The states of A(E) are the elements of £°(£), with g = §, and z 5 y if and only if
y=xzU{e} and e & z.

In the sequel, we use < to denote the covering relation associated to a partial order. A
covering chain from z toyisachain x = zp <1 <T9 < ... < xp =Y.

Lemma 4.5.1 Given z,y € L°(E) with © C vy, there exists a covering chain from z to y.

Proof: First observe that, for z,y € £°(€), z < y if and only if y = z U {e} for some
e & x. The proof is by induction on the cardinality of y \ . The basis is obvious, so let
y =1z U{e1,...,en}. There exists an e; € {e1,...,e,} which is minimal with respect to
the ordering on E, so z U {e;} € L°(£). Then |y \ (zU {e;})| < |y \ z|, and the conclusion
follows by an application of the induction hypothesis to z U {e;} C y. O

The following Lemma states the Jordan-Dedekind property for the partially ordered set
of finite configurations of a prime event structure £. Its proof follows from the observa-
tion that the length of any covering chain from z to y is completely determined by the
cardinality of the difference y \ z.

Lemma 4.5.2 In the partial order L£(E) all covering chains between any two elements
have the same length. O

Given z € L°(€) and a covering chain C of the form
=20 <1 <IT9<...<ZTp_1<Tp =Y

from z to y, define word(C) € E* as the sequence of events ey ... e, where z; = z;_1 U{e;}
fori =1,...,n. Observe that the pair (E, | g) is a concurrent alphabet, so the concurrency
relation ||g induces an equivalence relation ~gC E* x E*.

Lemma 4.5.3 For z,y € L°(€) and any two covering chains C = £ <11 <x2 < ... <
Tp1<zp,=vy,C =z<zi<ahb<...<z,_, <z, =y fromz toy,

word(C) ~g word(C").

Proof: By Lemma 4.5.2, C and C' have the same length n, and the proof is by induction
on n. Assume that the chains are not empty (otherwise the property is trivially satisfied),
and let 7+ 1 be the first index at which the two chains differ. Then z;;1 = z; U{e;;+1} and
zi = x; U{ej ,} where e;y1]||pei, . So x;U{ej11,€;,,} is again a configuration and, by
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X

Figure 4.6: Illustration of the proof of Lemma 4.5.3

Lemma 4.5.1, there exists a chain C” from z; U {e;j11,€},;} to y. By induction hypothesis
we have that
e;yword(C") ~g word(ziy1 < ... <zp)

and

eir1word(C") ~g word(zj, | < ... <z).

Now e;y1€; word(C") ~g €}, e;y1word(C"), so
word(z; < i1 <Tiyo <...<Tp_1 <Tp =1Y)
is ~pg-equivalent to
word(z; < @iy <Tjo <...<Tp_| <I) =Y)
and finally also the two words
word(z =21 < To < T3 <... <X <Tjp1 <...<Tp_1 < Ty =)

and
word(z =21 <@y < T3 < ... <T; <L <...<T)_| <z =)
are ~pg-equivalent. O

The above proof is illustrated in Fig. 4.6.
Proposition 4.5.1 The automaton A(E) is full.

Proof: The disambiguation condition on A(€) is immediate. Assume now that z 5 y
/
and r = 3 and that ¢||ge’. Then z = 2z U {e,e'} € Qp because this set is again a finite

/! /
configuration of £, so we have y = z and y' = 2. Finally, let £ 5 y and y 5 2z, where
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e||ze’. This entails that z U {€'} is again a finite configuration of £, in fact it is consistent
being a subset of a configuration, and downward closed as e and €' are incomparable, so

xigxu{e'}. O

We can now define a function R which maps a ~g-equivalence class of a computation
sequence v of A(E) into the finite configuration cod(vy) of £.

Theorem 4.5.2 The mapping
R:D°(AE)) — L(E)
18 an order isomorphism.

Proof: If 7y is a finite computation sequence of A(E), then its ~ g-equivalence class is exactly
the set of covering chains from () to cod(7y): this entails surjectivity by Lemma 4.5.1 and
also, by Lemma, 4.5.3, that any two equivalence classes of computation sequences having
the same codomain are equal, showing the injectivity of . Finally, it is straightforward
to check that R and its inverse are both monotone. O

In the sequel we shall denote by 2 the domain IdI(O (), <).

Lemma 4.5.4 For every full trace automaton A over the concurrent alphabet €, there
ezxists a stable embedding of the domain D(A) into €, where D(A) is the ideal completion

of D°(A).

Proof: The function tr : CS°(A) — ©(&) can be lifted to a function D°(A) — ©(&). Stark
has proved in [Sta89b], Theorem 4, that this function, extended by continuity to D(.A)
and €&, is an additive injection that satisfies the first condition of Lemma 3.3.2. It also
satisfies the second condition as a consequence of the fullness of A, so the result follows.[]

The following result is well known: proofs can be found, for example, in [RT91] and
[Win91].

Theorem 4.5.3 For any concurrent alphabet A, A is a coherent dI-domain. O

We can finally state our representation result for coherent dI-domains:

Theorem 4.5.4 1. If A is a full trace automaton, then D(A) is a coherent dI-domain.

2. For every coherent dI-domain D there exists a concurrent alphabet € = (Ep, ||g(p))
and a full trace automaton A(D) = (Ep,||gp), Q) Te(D), *E(D)) such that the
domain D(A(D)) is isomorphic to D.

Proof: Part (1). It follows from Theorem 4.5.3 using Lemma 4.5.4 and Proposition 3.3.2.
Part (2). Take A(D) as the full automaton A(E(D)). Then, using Theorems 4.5.2 and
4.5.1 we have that D(A(E(D))) = L(E(D)) = D. O
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4.5.4 Construction of a universal coherent dI-domain

The representation of coherent dI-domains in terms of computation sequences of suitable
trace automata can be used to build a universal coherent dI-domain, using once more the
universal Rado’s tolerance space Tgr, this time interpreted as a concurrent alphabet.

The following classical result of trace theory is useful for studying the poset ©(2) of
traces over a concurrent alphabet 2:

Lemma 4.5.5 (Levi’s lemma for traces; see [DR95]) If2A = (A4, |4) is a concurrent
alphabet and ss' = tt' for s,s',t,t' € O(2), then there are uy,us,us,us € O(A) such that
$ = ujug,t = uius, s = usug,t’ = usug, and Alph(uz) x Alph(uz) C ||4- O

The following proposition gives the exact relation between embeddings of concurrent
alphabets (i.e., tolerance spaces) and strong ideals of the associated trace domain.

Proposition 4.5.2 Assume that f : A — B is an embedding of the concurrent alphabets
(seen as tolerance spaces) A = (A, ||a), B = (B,||B). Then f, extended to traces, gives
an order-isomorphism between ©(A) and a subset M of O(*B), and:

1. If s<gt andt € M, then also s € M;

2. If s,t € M and s 1t, then st exists and is an element of M.

Proof: If f is extended in the canonical way to a function on A* — B*, then, by the very
definition of embedding of tolerance spaces, one has that, for all v,w € A*, v ~4 w if
and only if f(v) ~4 f(w). So, f induce a bijection between O(2) and a subset of M of
©(*8), which respects the prefix ordering. In the rest of the proof, we shall get rid of the
isomorphism and simply assume that A C B and |4 = ||g N 42 (so M = O(A) C O(B).
For the first part of the statement, if s = [ulg and ¢t = [uv]y, then u € A* and
s = [u]y, so s € O(A). For the second part, if s 1 ¢, then there exist s',#' such that
ss' = tt'. By Lemma 4.5.5 there are ui,us, us, us such that s = ujug, s’ = usug, t = ujus
and t' = ugug with Alph(ug) x Alph(us) C ||4. Hence u = ujusus = ujugus € O(2).
Clearly s,t <g u; assume that for some s”,t"” we have ss” = #t": then ujuss” = ujust”
and so, by the cancellation property of the free partially commutative monoid © () (see,
for example, Diekert [Die90]), ugs” = ugt”. By another application of Lemma 4.5.5 we
obtain a decomposition us = af, s” = v, ug3 = ay and t” = (3§, with each symbol
occurring in § concurrent with all symbols in . This entails that o = [¢], so ug = 5,
ug =, and s” = uzd, " = usd. Finally we conclude that u <g ss”, so u = sUt. O

We thus obtain, as a consequence of Proposition 4.5.2, the following Corollary:

Corollary 4.5.1 If U, B are concurrent alphabets and there_ exists an embedding of A
into B, then there is a stable embedding-projection pair from A to B.

Proof: In the light of Proposition 3.3.2, using Proposition 4.5.2, we obtain that Id1(©(2())
is (isomorphic to) a strong ideal of Id1(©(8)). By definition of 2 and B, using the second
part of Proposition 3.3.1, we obtain the result. O

We can finally state the main result of this section:
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Theorem 4.5.5 The domain Tr s a universal domain in the category of (countable)
coherent dI-domains with stable embedding-projection pairs as morphisms.

Proof: Given any countable coherent dI-domain D use Theorem 4.5.4 in order to build
the full automaton A(D) over the concurrent alphabet € = (Ep, [|g(py). Its domain of
computations D(A(D)) = D can be stably embedded, by Lemma 4.5.4, into the domain
&, which in turn can be rigidly embedded into 7g by Theorem 4.3.1, Corollary 4.5.1. O

An important question whose answer is not known at present is whether the domain
7Tr is isomorphic to the universal coherent dI-domain whose existence is proved in [Dro91].
In particular, it would be interesting to know whether 7R is homogeneous, because in
this case the isomorphism could be established as a consequence of the uniqueness of the
universal homogeneous domain of Theorem 4.2.1.

4.6 A note on probabilistic constructions

In this section, we shall discuss in some detail a probabilistic technique which can be used
as an alternative way to show the existence of universal homogeneous representations;
in particular, our starting point will be the result of Erdés and Rényi [ER63] (discussed
at length by Cameron [Cam90]; see also [ES74]), which essentially present a probabilistic
proof of existence for the universal Rado’s graph. We will show how this could be extended
to generalized tolerance spaces and MeES’s. In this section, we shall be a bit vague in our
notation, and most of the proofs will be only sketched, because a pedantic discussion of
probabilistic matters is beyond the scope of this thesis.

4.6.1 Probabilistic construction of Rado’s graph

We first present the Erdés-Rényi universality proof for the category TolSp. Let G be the
set of undirected graphs’ with node set w. Let A be the smallest family of subsets of G
satisfying the following constraints:

1. for every edge e, the set Go = {G : e is an edge of G} is an element of A;
2. G is itself an element of A;

3. if S €A, thenalso G\ S € A;

4. if S is a countable subset of A, then US € A.

In practice, A is the o-algebra on G generated by the set of graphs containing a fixed edge
(cfr. Appendix A.2).
We then define a (probability) measure p for A, by letting:

o for each edge e, u(Ge) = p({G : e is an edge of G}) = 1;

"In this case, it is somewhat easier to look at a tolerance space as an undirected graph, and use the
standard graph-theoretic terminology. An element of the tolerance space will be therefore referred to as
a “vertex”, and an “edge” will be an unordered pair of vertices (i.e., a subset of the vertex set having
cardinality 2).
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e the two events G, and G are independent, whenever e and e’ are different.

Now, u is a standard probability (i.e., normalized) measure, corresponding to the
construction of a random graph on w where, for each pair of vertices, there is exactly a
probability % that they are joined by an edge.

Alternatively [Cam90], this could be rephrased as follows: consider a fixed enumeration
of the edges (i.e., an enumeration eg, €1, ez, ... of the set {e C w : |e| = 2}). Then, there
is a bijective correspondence between G and the set of binary w-sequences; we can thus
consider {0,1}* as a probability space, by assuming that the event (set of sequences)
having a “1” in a preassigned position is %

In a more concrete (although a bit imprecise) way, we could think of a coin-tossing
game: for each pair of vertices, we toss a (fair®) coin to decide whether to join them by
an edge or not.

Now, the argument of the proof proceeds as follows. Let A, B Cg, w be two finite
disjoint sets of vertices (not both empty), and consider the following event?:

E(A, B) =“there exists a vertex z in G which is adjacent to

every vertex of A and to no vertex of B”.

Now, let zg,z1,... be an enumeration of the elements of w\ (AU B), and consider, for
each n =0,1,..., the event:

F"(A, B) =“no one of the vertices o, ... ,z, satisfies the property of being

adjacent to every vertex of A and to no vertex of B”.

Clearly, E(A, B) is the complement of the set N,c,F"(A, B), so (by Proposition A.2.1
(6)) u(E(A,B)) =1 — p(NpewF™(A, B)). Observe that the sequence F"(A, B) satisfies
the antimonotonic property, i.e., F"*1(A, B) C F"(A, B) and thus, by Proposition A.2.1
(5),

#(MnewF" (A, B)) = lim_ pu(Fg (A, B)).

But now, for each z, the probability of x to be non-adjacent to some vertex of A, or
adjacent to some vertex of B, is one minus the probability of it to be adjacent to all
vertices of A and non-adjacent to all vertices of B, i.e., 1 — 27™ where m = |A| + |B|.
Since this probability is independent for all z’s, we have that

mn 1 n
p(F(A,B)) = (1 - 5.-)
and so .
M(mnEan(AaB)) = nli_{go(l - 2_m)n =0

which finally means p(E(A, B)) = 1.

So Prob(E(A,B)) = u(E(A,B)) = 1. Now, we are interested in the probability
measure of the set of all graphs satisfying the saturation property, i.e.,

Prob(N4,sE(4, B)) = u(Na,sE(4, B))

8Yet, as we shall see, fairness is not a strict requirement for the construction.
9We identify an event with the set of graphs G € G satisfying the statement.
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which is 1 — u(Ua,pE(A, B)®). But Us gE(A, B)® is a countable union (because there
are only countably many pairs of finite subsets of w) of sets, each of them having meas-
ure u(E(A,B)°) = 1 — u(E(A,B)) = 0. So, by Proposition A.2.1 (7), it also has
measure zero, and thus the measure of the set of all universal homogeneous graphs is
1—pu(Ua,E(A,B)°)=1-0=1.

In other words, the random graph satisfies the stepwise-saturation property of The-
orem 4.2.2 with probability 1. Thus, by the uniqueness property of Theorem 4.2.1 (using
Property 4.3.1), the random graph is 7g with probability 1.

As Cameron observes ([Cam90], Exercise 4.3.1), the whole proof does not really depend
on the fairness assumption in the coin-tossing game. We could set the probability of
each edge to be any (fixed) p € (0,1) and obtain the same result. In other words, the
construction of Rado’s graph is very robust, and does only depend on the important
assumption that the choices made at each edge are independent: this is, as a matter of
fact, the crux of the whole construction, because it gives a sufficient degree of freedom as
to insure the universal property to hold.

4.6.2 Probabilistic construction of the universal gts

We are now ready to generalize the construction of Rado’s tolerance space to the case of
gts’s; even though it would be possible to develop a machinery like that presented in the
previous paragraph, we shall skip the details and come to the core of the proof without
indulging in all the technicalities involved in it.

We want to build a random gts Tranp, much in the same way as we did for the
random graph; take w as underlying set. Now we have to construct the consistency
predicate Conganp. In order to do this, consider a fixed enumeration Ag, A1, Ag,... of
the finite subsets of w satisfying the following constraints:

1. the enumeration is injective; i.e., A; # A; whenever i # j;
2. if B C A;, then there exists j < i such that B = A,.

Such an enumeration can be built step-by-step by the following recursive procedure:
e First step. Set Ay =0 and put S = w;

e Inductive step. Suppose that you have already built the subsequence Ay, ... , A,
and let n = min S. Then, for each i = 0,... ,k, define Ag4,11 = A; U{n}; moreover,
delete n from the set S.

This procedure produces the sequence 0,{0},{1},{0,1},{2},{0,2},{1,2},{0,1,2} etc.
Now, for each ¢ € w, decide whether A; € Conganp using the following randomized
algorithm:

1. if |A;] <1, then put A; in the consistency predicate (with probability 1);

2. otherwise, consider all the indices j < 4 such that A; C A;: if there is an index for
which A; & Conganp, then do not put A; in the consistency predicate; otherwise,
decide whether to put it in or not with probability %
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The procedure is defined in such a way that the resulting structure is necessarily a gts,
because it is clearly downward-closed and contains all singletons.

Now, we have to prove that saturation holds with probability 1. Suppose that we have
a finite sub-gts of Tranp, with underlying set Y Cg, w. Then, there will be a certain
(finite) set of indices ap < a1 < ... < oy such that {A,,,i=0,... ,k} = p(Y) (and, more
precisely, k = 2/Y| — 1), some of them corresponding to consistent sets. Let C be the set
of subsets of Y which are in the consistency predicate Conganp (with M = |C| being the
cardinality of such set), and let A C C be a downward-closed subset of C. We want to find
an element z ¢ Y such that the only consistent subsets of Y U {z} are those of the form
AU{z} for A € A.

For a fixed z ¢ Y, there are exactly k non-singleton subsets of Y U {z} containing z,
and for each of them we have to decide whether it is consistent or not. Clearly, those sets
A including z such that A\ {z} is not consistent are, so to say, out of the game, because
certainly (with probability 1) they will not be in the consistency predicate. We only have
to worry about the sets of the form B U {z} with B € C; for each of them, there is a
probability % that they are included (or not included) in the consistency predicate. So,
the probability that z exactly satisfies our needs is just QLM

Thus, the probability that no x ever satisfies saturation is

. N
(L~ 5r)
because the choice is made independently for each x; this limit is zero, as soon as C # ()
(which is clearly satisfied), and so Tranp has the saturation property with probability 1.

Note that, also in this case, we could put the probability equal to some p € (0,1) and
still obtain the same result, like in the case of ordinary tolerance spaces.
4.6.3 Probabilistic construction of the universal MeES

We now want to establish a randomized construction for the universal homogeneous MeES,
which we shall denote by Eganp. Take first w as event set, and consider the same fixed
enumeration Ag, A1, Ag,... of pa,(w) as in paragraph 4.6.2. Now, we also need an enu-
meration (eg, By), (€1, B1),... of w X gg,(w) satisfying the following constraints

1. the enumeration is injective; i.e., if ¢ # j then either e; # e;, or B; # B; (or both);
2. if B C B;, then there is some j < ¢ such that e; = ¢; and B = B;.

This can be easily accomplished by first considering the standard (inverse) Cantor’s coding
for the set w x w, namely (left, right) : w — w X w as represented in the diagram:

0 1 2 3 4
00 2 5 9
1(1 4 8
213 7
316
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Now, define, for each i € w, e; = left(i) and B; = Arighy(s)- Injectivity follows from the fact
that (Ap)new is injective; the other property follows from the analogous property of the
A;’s, and from the fact that the projection of Cantor’s coding along each row (or column)
is a strictly increasing endofunction of w.

We are then ready to express the random algorithm used to establish the consistency
predicate Conganp and the enabling relation Franp. The former is described as in Para-
graph 4.6.2; for the latter, proceed as follows. First, form a binary sequence g, a1, a2, ...
with the pocedure defined, for each ¢, as follows:

1. if there is a j < 4 such that e; = ¢; and o = 1, put o; = 0;
2. otherwise, put «; = 1 with probability %

Following this procedure, for each e € w, the set {i € w: a; =1 A e; = e} is either empty
or a singleton made by a unique index, say i.. Put, for each set B € Conganp and each
ecw

B Franp e iff i, exists, Bie € Conganyp and Bie C B.

Observe that this predicate is decidable: for each B, there will be an index j such that
B = Bj, and so the subsequence ag, a1, . . . , a; is enough to decide whether B Franp e or
not. Moreover, the structure is a MeES, and p, exists only if i, exists and B;, € Conganp,
and in that case p. = B;, .

We should now prove the saturation property for Eganp. We follow the lines, and use

the same notations, as in the proof of Theorem 4.3.5. For a fixed y € Y, the probability
that y is consistent with all and only those subsets of Y which belong to C is just QLM,
where M = |Con} 4y pl-
Now, we have to consider the probability for y to be enabled in the ways described by the
formula of page 60 (the proof for z is similar, and omitted): this is the probability of 4,
to exist and B;, = A. We have to consider all indices j such that e; = y: there will be a
certain index j s.t. e; = y and B; = A. Now, the probability that a; = 1 is 1 minus the
probability that a; = 1 for some j < 7, or j > j. Clearly, there are K = |p(A)| —1 indices
J smaller that j s.t. e; = y, and the probability for one of them to be “1” is 1 — 2% Then,
the probability that a; =1 is precisely ZK%

So, the joint event we are interested in has probability 2M(++1) for a fixed y. The probab-
ility that y does not exists is thus

. 1,
dim (1= o)

which is 0. So y (and also z, for analogous reasons) exists with probability 1, whatever
the choice of Y Cgp, w, A € Conganp and C C Conk ,yp (with C # ).

This proves that Erpanp is isomorphic to the structure £y of Theorem 4.3.5 with
probability 1.

4.7 Summary of the universality results

In the following table, for convenience of the reader, we summarize the universality results
obtained in this chapter. In each row of the table, we indicate a kind of representation,
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and the corresponding domain category. In the last two columns we give the reference to
the universality result(s), both for representations and domains; an asterisk indicates that
homogeneity was also proved.

Representations Domains Universality results for
representations domains
tolerance spaces coherent atomic dI-domains | *Thm. 4.3.1; *Subs. 4.6.1 | *Cor. 4.3.1
generalized tolerance spaces atomic dI-domains *Thm. 4.3.3; *Subs. 4.6.2 | *Cor. 4.3.2
min. enabling event struct. dI-domains *Thm. 4.3.5; *Subs. 4.6.3 | Cor. 4.3.4
Prime event structures } coherent dI-domains — Thm. 4.5.5
full trace automata
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Chapter 5

Tolerance spaces and
approximation

5.1 Introduction. Why tolerance spaces?

In this chapter, we aim at discussing in more detail the notion of tolerance space, in
particular with respect to their application to measurement and approximation theory.

The importance of the concept of “tolerance” is nicely described by Shreyder in [Shr71],
where he states that:

The familiar concept of equivalence allows us to partition a set of objects
into classes of “identical” objects from any particular point of view. However,
in a number of cybernetic problems, it is more convenient to speak not of
identical objects but rather of similar or indistinguishably different objects.
For example, we may speak of points that are indistinguishably different for
the eye, of words that are similar in meaning, of interchangeable members of
a single collective, etc.

Zeeman [Zee62] introduced the name tolerance relation to mean those formal relations
which are suitable to capture the essence of this definition of indistinguishability; later
on, these relations were further studied in different contexts (by Kalmar [Kal67], in the
description of a formal model of semantics; by Khalimsky et al. [KKM90], in the area
of digital topology and computer graphics; by Shreyder himself, with applications to the
theory of nonrigid taxonomy [Shr68a], and to the structure of collectives [Shr68b]). More
recently, new insights in the study of tolerance relations were given by studies related to
fuzzy analysis [TS95, Thi96b, Thi96a).

Clearly, the crucial difference between the definition of an equivalence relation and
that of a tolerance relation is “transitivity”. The question whether transitivity of indif-
ference should be taken as an axiom or not has been largely discussed, since the works in
psychometrics of the 50s.

A classical example against transitivity of indifference is the following, due to Luce
[Luch6]: most people would prefer a cup of coffee with one spoon of sugar to a cup
with five spoons; yet, if sugar were added to the first cup at the rate of 1/100 of gram,
they would almost certainly be indifferent between successive cups. If indifference were

87
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transitive, they would have to be indifferent between the cup with one spoon and the
cup with five spoons. So, indifference should not be taken to be transitive in the case of
preferences, and many other examples of non-transitivity can also be found in many other
practical situations. Does this also happen in the case of physical measurements? In the
ideal situation where measuring instruments are perfect and always give a precise answer,
the indifference relation should coincide with the identity. But the crude reality is that
instruments are not infinitely precise, and the discriminating power of humans who use
these instruments is limited: for these reasons, transitivity of indifference is a chimera also
when measuring physical magnitudes.

Parikh [Par83] also presents many paradoxes originated by the false hope that transit-
ivity holds in real-life situations. In particular, he quotes a famous puzzle (also discussed
by Michael Dummett [Dum?75] and Crispin Wright [Wri75]):

Imagine a series of coloured patches, beginning with a red patch. Suppose,
moreover, that the colour from patch to patch changes gradually so that the
last patch is quite clearly not red. However, the change is so gradual that each
patch is — to the eye — quite indistinguishable from the next in colour. Now
[ ... ] is there a last red patch in this series? Clearly there must be one since
the series doesn’t stay red forever. However, if there is such a last red patch,
then the next one, indistinguishable from it in colour, is nonetheless not red.
And surely that is absurd. Hence the paradox.

At this point, we think that the reader should be convinced of the importance of
studying intransitive relations (i.e., tolerance relations) and apply them to the context
of measurement, in particular in (but not with restriction to) the field of perception and
social sciences.

5.2 An example — Analog-to-digital conversions and dou-
blescales

In his paper [Smi93], Einar Smith presents an interesting example of how intransitivity of
indifference arise naturally in physical measurement and computer science, and introduces
a technical solution to this problem by defining the notion of “doublescale”.

Consider the common problem of making an analog-to-digital conversion: in other
words, suppose that a physical device must be designed to read the physical position of a
pointer on an analog scale (i.e., a continuous scale) and to produce a digital (i.e., discrete)
value in output. We can assume that the scale is divided into equally-spaced segments,
each representing one digital value. Since the pointer has a non-negligible width, though,
when it overlaps one of the segment borders, there will be no ways for the converter to
decide which is the correct value to be output (see Fig. 5.1).

To bypass this problem, one could use two pointers, one displaced slightly from the
other, and to choose in some logical way between the outputs available. Instead of using
two displaced pointers, one could as well use one single pointer on two displaced scales,
like in Fig. 5.2. As we can see, for example, when the pointer is in position A, no correct
value can be read from the upper scale, but one correct (unambiguous) value is read from
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Figure 5.1: An analog scale with a pointer

B
7 9 ‘ 11
8 10

6

Figure 5.2: Two displaced scales

the lower scale (because the pointer is definitely in the segment 4). In general, for every
possible position of the pointer, there is at least one unambiguous value read on one of the
scales. In some cases, though, there are two correct values, like in position B, where the
values 9 and 10 are both possible. Which is the correct one? which one should be output?

There is no answer to this question: as a matter of fact, we can say that both values
are correct, because both are possible. In a sense, this means that the actual scenario is
compatible with both of them; or, said otherwise, the two statements “the correct value is
9” and “the correct value is 10” are not contradictory, because of the (inherent) limitations
in our resolution power.

This consideration has a strong impact on the way we should build our measuring
scales; in fact, even though the magnitude we are measuring is of scalar type, there will
be no linear (total) order on its values. Rather, we shall have a partial order, reflecting
the impossibility of making comparisons on indistinguishable values. Looking at our two
displaced scales, for example, we can certainly say that value 3 is “definitely smaller” than
value 8, because the two values are incompatible (i.e., they are distinguishable by means
of our measuring tool), but the two values 3 and 4 are “indistinguishable” in the sense
that we have no ways to compare them. As a matter of fact, we can build two different
converters in such a way that the same position of the pointer will be interpreted as 3
by the first converter, and as 4 by the second, due to a different internal logic used for
choosing the correct value to output, when two values are possible.

In other words, our measuring scale will be the partial order represented in Fig. 5.3.
In practice, this corresponds to the poset (Z, <) where

r<Lyifandonlyifz +1<y.

We shall refer to this poset as the doublescale'. Later on, we shall introduce the notion
of semiorder, and prove that the doublescale is an example of semiorder. In the present
context, however, we content ourselves to observe that the incomparability relation of this
semiorder is not an equivalence relation, but rather a tolerance relation. In Fig.5.4 this

!This is not the definition given in [Smi93], where a doublescale is taken to be any subposet of (Z,<)
induced by an interval of Z. However, any such doublescale is really a substructure of (Z, <), as [Smi93]
observes in Example 4.11.
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Figure 5.3: Hasse diagram of the doublescale

Figure 5.4: The co-doublescale

tolerance relation is shown: this is precisely the relation ~ defined by
z ~y if and only if [z — y| < 1.

The tolerance space (Z, =) will be called co-doublescale, and will be denoted by Z. Note
that Z, seen as a graph, is simply a bi-infinite path on countably many vertices (or, if
you prefer, it is the symmetric reflexive closure of the covering relation associated to the
standard ordering on the integers).

5.3 Tolerance spaces and continuous functions

In Chapter 4 we have considered the category TolSp of tolerance spaces? with embed-
dings; now, we shall discuss briefly the importance of tolerance-continuous maps, and thus

*In this chapter, the words “tolerance space” and “(undirected) graph” will often be used interchange-
ably; so we shall speak of “points” or “vertices” (nodes) to refer to the elements of the space (graph),
and use the word “edge” (arc) to indicate a pair of co-related points. This confusion should not harm the
reader.
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introduce a supercategory of TolSp, where arrows are represented by continuous maps.
As we shall prove, this category contains all limits of w-chains, and we can give a nice
direct (standard) construction for those (inverse) limits.

We let ¢TolSp be the category of (countable) tolerance spaces, with tolerance-con-
tinuous maps. As usual, unless otherwise stated, if 7 is a tolerance space, then X will
represent the underlying set and co the tolerance relation. Moreover, if (X;)ic, is an w-
sequence of sets, the elements of [];-, X; will be denoted by boldface letters, like x, while
x; denotes the i-th element of x.

Theorem 5.3.1 The category cTolSp has inverse limits of w-cochains.

Proof: Let (T, fn)new be an w-cochain of tolerance spaces. Define the following data:

o X is the subset of [[,,,, X, containing only those vectors x such that, for all n € w,
fn(Tnt1) = Tn;

e two vectors x,y € X, are coy, related if and only if, for all n € w, it holds that

Ty, COp Yn-

Let To be the corresponding tolerance space (Xoo,C0x), and let, for each n € w, ¥, :
X — X, be defined as the n-th projection, i.e., ¥, (x) = z,, for every vector x € X.
Clearly, the 1),,’s are continuous maps. Moreover, for each x € X, we have f,,(¢p+1(x)) =
fr(Tni1) = Tp = Pp(x) as required for a cone. Let now 7 be a tolerance space, endowed
with continuous functions ¢, : 7 — T, such that f,o¢,11 = ¢,,. Define h: T — T, as the
function mapping t € 7 to the sequence h(t) = (¢o(t), $1(t),...). This is well-defined, and
moreover it is continuous: in fact, if £ co ¢’ then also ¢, (t) co, ¢, (t') (by continuity of the
¢;’s), and so also h(t) cos h(t'). Now, for each t € T, one has 1, (h(t)) = (h(t))n = dn(t),
i.e., 9, o h = ¢,, as required. Suppose finally that A’ is another such function; then, for
every t € T, we should have v, (h'(t)) = ¢,(t) which implies h = h'; so uniqueness is
proved. O

We now introduce some more notation that we shall use in the sequel. If (7, fr)new is
an w-cochain, we define, for each n < m, the function f* : 7, — 7, as the (continuous)
function fpo fpt10---0 fr—1 (by definition, f;7 is taken to be the identity of 7). Observe
that, if 7o, is the inverse limit of the chain, then for all x € 7, and for any choice of
n < m, we have:

f;n(wm) = fn(fn—}—l(fmfl(-z'm) )) =
fo(fn1(o- fm—2(Tm-1)--+)) = -+ = fa(Tnt1) = Tn.

An important point, here, is transitivity. A tolerance space is transitive if the tolerance
relation is such; from a graph-theoretical point of view, a tolerance space is transitive if
and only if every connected component is a clique (i.e., a complete graph). A very special
case of transitivity happens when the tolerance relation is the identity (in which case we
speak of a totally disconnected tolerance space).

One natural question is the following: suppose you have an w-cochain of tolerance
spaces, each of them being taken to represent a certain “resolution degree” of a measuring
tool. Intransitivity happens because there are certain indistinguishable (but different)
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values the instrument can output. Of course, we can improve the resolution power of
our instrument, i.e., take a more accurate one. In this case, we shall have in general
more points and better approximations. The projection maps of the w-cochain precisely
represent the fact that each point in the (more accurate) tolerance space 7,41 is a better
approximation of a point in the (less accurate) tolerance space Tp; continuity serves to
insure that we cannot introduce less accuracy (i.e., if we cannot distinguish two points at
level n + 1, we could not distinguish them at level n).

Yet, in the limit, we hope to have an infinite accuracy in the measurement, and there-
fore a transitive tolerance space. Is there some (formal) way to express this situation. In
other words, is there a way of expressing a condition on the w-cochain which is equivalent
to its (inverse) limit being transitive?

In order to solve this problem, we introduce the notion of intransitive triple. An
intransitive triple (or, a “V”) of a tolerance space T is a triple (z,y,2) € X3 such that
zcoy, ycoz but =(zcoz). We let V(T) be the set of all intransitive triples of 7.

Notice that 7 is transitive precisely when it has no V’s, i.e., when V(7) = 0. Also,
trivially:

Property 5.3.1 Let f : T — T' be continuous, and (x,y,z) € V(T); then either
(f(z), f(y), f(2)) € V(T') or it is a cliqgue of T' (i.e., any two elements of the triple
are co'-related). O

Given an w-cochain of tolerance spaces (7, fn)new, define, for each n € w and for each
(z,y,2) € V(Tn)

T(z,y,2) =sup{k > n: (', ¢/, ") € V(Ti). fi(a) = =, i) =y, fi () = 2}

This is called the resolution time of (z,y, z). In practice, 7(z,y,2) = k < co means that,
up to level &, there exist some V which is a better approximation of (z,y, z), but, as soon
as we move to a higher level, this is no more true. Otherwise said, suppose we are doing a
measurement using the n-th instrument, and we observe a “local contradiction” to trans-
itivity (i.e., an intransitive triple). We can try to make better and better measurements,
in order to solve our contradiction, but we know that this contradiction will be certainly
solved not later then level £ (maybe sooner, maybe not). If 7(z,y,2z) = oo, then there is
at least one case in which our contradiction will never be solved, and in principle we shall
wait forever, making better and better experiments without ever succeeding.

We have then the following result:

Theorem 5.3.2 Consider an w-cochain (Tn, fn)new, and suppose that, for each n € w
and x € X,,, the set f;'(x) is finite. Then, the following are equivalent:

1. T is transitive;

2. for alln € w and all (z,y,2) € V(Tp), one has 7(z,y,2z) < 0o.

Proof: (1) = (2). Suppose that X cos ¥ €O 2, and assume by contradiction that
—(zp, cop, 2,) for some n. Then (Tn,yn,2n) € V(Tn); let now k = 7(zn,yn, 2n) + 1; by
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definition of 7, there is no triple (z',y',2') € V(T;) which is mapped to (zp,Yn,2n) by
f,’f But this means that (g, Yk, 2zx) is not a V of T, which implies that zj coy zx: this is
impossible, because then, by continuity, we should have z,, co, zj,.

(2) = (1). Suppose that (2) does not hold, i.e., that there is some n € w and
some (Zp,Yn,2n) € V(Tn) such that 7(zn,yn,2n) = oco. This means that there exists
an infinite sequence of V’s (Zn, Yns 2n), (Tn+1, Ynt1s Znt1), - - - such that fi(z; 1) = x; (for
every i > n). Now, for each i < n, let z; = f*(z,), yi = f*(yn) and z; = f*(zn).

By construction, x = (xg,%1,.-.),y = (Y0,%1,...) and z = (29, 21,...) are elements of
X0, and moreover X cox ¥ COx Z, but —(X cox, 2), since —(zy, coy, 2,,)- O

If the conditions of the previous theorem are satisfied, we say that the cochain is
transitive (in the limit). This does not mean, however, that each element of the cochain
is transitive, neither that it is transitive from a certain index on.

In general, the transitivity condition is crucial if we want to use a chain of measuring
instruments, but it is not enough. In fact, it does not guarantee the time we have to wait
before a contradiction (a “V”) is solved to be bounded in any sense. It could depend
on the specific intransitive triple, or on the specific resolution level. For this reason, we
introduce two more definitions.

For an w-cochain (75, fn)new, and for each n € w:
o define 7} = sup{7(z,y,2) : (z,y,2) € V(Tp)} (called the resolution time at level n);
o let 7* = sup,,c, (7 —n) (called the global waiting time).

We say that the cochain is locally bounded transitive (or lb-transitive) if it has finite
resolution time at every level (ie., if 7,7 < oo for all n € w); it is bounded transitive (or
b-transitive) if it has finite global waiting time (i.e., if 7* < 00).

5.4 An example — The Negative Digit Representation for
the reals

Consider the problem of representing real numbers using some setting which allows ap-
proximation to be taken into consideration. For sake of simplicity, let us simply limit
ourselves to the unit interval I = [0, 1]: the most usual approach consists in representing
each point of I using an infinite sequence of bits.

More precisely, we define a map?

¢: {0,1}* — I
d=didy... — Z;ﬁl dﬂfz'

which is surjective, and thus allows one to represent any point of I with some infinite
sequence. Note that ¢ is not a bijection, because each dyadic rational* has two represent-
ations (for example, the sequences 01111... and 10000... both represent the real number

1/2).

3For each finite set ¥, we let X* (X%, X°) be the set of finite (infinite, finite and infinite, resp.) strings
over ¥. We also use the symbol < to denote the prefix relation between strings.
4A dyadic rational is a rational of the form m/2", with m,n € Z.
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This representation is known as positive digit representation in base 2 (or 2-PDR, for
short). Of course, one can generalize this to any base b > 1, representing reals with
sequences of digits from the set I'y, = {0, 1,... ,b— 1}, defining the representation map as

¢: {0,1}*® — I
d=didy... — E,?ildzb_z

This is known as b-PDR; the usual way to write real numbers (the decimal notation)
corresponds to the 10-PDR.

As observed by [Siin95], there are two problems with positive digit representations:

e first of all, they are not injective: some numbers have more than one representation
(we have already noticed this in the binary case);

e secondly (and more importantly, as far as approximation is concerned) addition is
not computable. To explain this seemingly surprising statement, we need introduce
the notion of finite truncation. Every initial (finite) prefix of a sequence representing
a real number can be thought of as an approximation to that number; to do this,
one can extend the function ¢ to finite sequences, by putting:

¢: T} — I
d=dy...dy — Y, dib".

Now, a finite sequence can represent any (non-approximate) number of which it is a
prefix, so, if < denotes the prefix relation among sequences, the sequence d is taken
as representing the whole set {e € 'Y : d < e}, or, more precisely, the set of real
numbers {¢(e) : e € 'Y A d X e}. This is clearly a closed interval of real numbers.
So, for example, the finite sequence d = 011010 is mapped to:

1 1 1 13

=35 %

and represents the closed interval [é—g, é—%] (the left extreme is represented by the

sequence 0110100000. .., the right extreme by 0110101111...). As one can see,
¢(d) is one extreme of the interval, and not — as one would probably like — the
center.

This has some unpleasant drawbacks: suppose you are given the approximate ver-
sions of two real numbers like, for instance:

d; = 0111 ds = 0000

and you are required to obtain (an approximate version of) their summation. Now:

1 1 1 7
e R T T;
¢(d2) = 0
so d; and dj represent the intervals 4; = [, 3] and Ay = [0, {5]. Their summation
709

is thus in the interval B = [45, 15]: so, the result should be a truncated sequence



5.4. An example — The Negative Digit Representation for the reals 95

e corresponding to an interval C' which includes B. Clearly, the only sequence
satisfying this constraint is the empty one (which corresponds, by definition, to I),
because even the 1-digit sequences 0 (corresponding to the interval [0,1/2]) and 1
(corresponding to [1/2,1]) are not precise.

So, in this case, even though we possess a 4-digit approximation of the two sum-
mands, we cannot give even a single digit approximation of the result.

From a more abstract viewpoint, the problem with positive digit representation is that
it is not well-suited for dealing with approximation, in that approximation is taken to
be “symmetric”, i.e., the uncertainty interval represented by an approximated sequence
should be centered in the value represented by the sequence.

To solve this problem, using an idea originated by Cauchy [Cau40] and extensively used
in [Gia93] (see also [Bol95]), we must find a way of coding real numbers such that each
digit may give a positive or a negative contribution: this introduces a sort of redundancy
but allows to overcome the aforementioned difficulties ([Smy92], Example 5.0.13).

We now give a precise definition. For any integer b > 1 (called the “base”), we let
Yp = {1 € Z: |i| < b} be the set of signed digits in base b. We define a function ¢y : £ — R

acting as follows:
|d|

dp(d) =D dib™".
=1

From now on, we suppose that a base b > 1 is fixed, and we omit the subscript b. Note
that:

Lemma 5.4.1 The image of £ w.r.t. ¢ is [—1,1].

Proof: First observe that, for every d € X%

o0

—(b—1) ib‘i <pd) <(b—1)> b
=1 =1

Since 352 b~ = 72+, and thus 3°3°, b~ = ;1; one obtains:

~1<¢(d) < L.

For surjectivity, notice first that we just need to prove surjectivity on the interval [0, 1],
because if d = dids ... is such that ¢(d) = «, then the sequence e = (—d;)(—d2)... is
mapped to

Now, let @ € [0,1) (the representation of 1 is given by the sequence (b — 1)(b —
1)...). We proceed building three sequences ag, a1, ... ,79,71,... € [0,1] and di,ds, ... €
{0,1,... ,b— 1} such that, for all i > 0, o; € [0,b77).

Inductively, let first ap = a € [0,1) and r9 = 0. Now, to assign @;i1,7i+1,dit1,
consider the intervals I, = [kb=0+D (kK 4+ 1)b=0+D) for K =0,... ,b— 1: they are disjoint
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and their union is [0,57%). So, by inductive hypothesis, there is (exactly) one k s.t. a; € Iy;
now let:

diy1 = k

—(i+1
riv1 = 13+ dig b0
Qi+l = Qo —Ti41-

Consider the sequence d = dqds .. .:

o(d) =S dip 107 =3 "(rip1 — 1) =
i=0 i=0

n

= i, 2 (i —ri) = fim o =
3=

= lim (ap — o) = a— lim a,.

But ay, € [0,67 "], and so lim,,_, o @, = 0. Thus ¢(d) = «, as required. O

Lemma 5.4.1 shows that we can represent every real number in the interval [—1,1] by
means of an infinite sequence: as already noticed, this is not a one-to-one coding for the
reals, but it is surjective. Clearly, every finite sequence should be correctly interpreted as
a (closed) interval on the real line, as the following definition suggests.

We let 9 : £* — p(R) be the function defined as follows:

P(d) = [(d) — b7, g(d) + 5],
Now, for each n > 0, let T, = X" and co,, be a binary relation on T,, defined as follows:
d co, e iff |p(d) — o(e)] <2677,

or, equivalently, if and only if ¥(d) N (e) # 0. Clearly, co, is a tolerance relation
(it is reflexive and symmetric), but it is not transitive in general: it corresponds to the
incomparability relation of a semiorder (this is a direct consequence of the Scott-Suppes
representation theorem [SS58]). We use R,, to denote the tolerance space (T),,co,). It is
possible to give a direct interpretation of co, using the notion of approximation, as done
in the following;:

Lemma 5.4.2 For all n, and d,e € T, we have that d co, e iff there exist d',e' € X%
such that d X d’, e < € and ¢(d') = H(€').

Proof: Only if. Let a = Z-(¢(d) — ¢(e)). Clearly a € [~1,1]. So, by Lemma 5.4.1, there
exist fT,f~ € X% such that ¢(fT) = a and ¢(f) = —a. Let now:

d = dldgdnfl_f;
dl = 6162...enf1+f2+....

We then have:
p(d') = ¢(d) +d(f7)b" = (d) —ad™"
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and
¢(e') = d(e) + $(f)b " = d(e) +ab "
But 2ab™ = ¢(d) — ¢(e) which implies ¢(d) = 2ab™" + ¢(e) and so

d(d) =2ab " + p(e) —ab " = p(e) + ab " = ¢(e).
If. We have that:

¢(d) - ¢(e) = ¢(dl) - ¢(dn+1dn+2 ce )bin — qS(e') + ¢(en+1en+2 ... )bin
Since ¢(epti€nt2...) — d(dp+1dnt2...) € [—2,2] we have that:

|¢(d) — p(e)] < 207",
O

The above Lemma 5.4.2 could be rephrased by saying that two n-truncated approxim-
ations are incomparable via co,, precisely when they are prefixes of two infinite sequences
representing the same real number.

An immediate consequence of Lemma, 5.4.2 is that the function f, : T\, 11 — T, defined
by
foldy ... dpdpy1) =dy...dy

is continuous:

Corollary 5.4.1 The map frn : Rpt1 — Ry is continuous. O

In other words, (R, fn)ncw is an w-cochain of tolerance spaces. Now, we prove that
it is bounded transitive. We first need the following

Lemma 5.4.3 If x,y € T, then |¢(x) — ¢(y)| is an integer multiple of b ™. Thus,
(x,y,2) € V(Ty,cop) if and only if there exist some integers k,h such that |k| < 2,
|h| <2 and |k + h| > 2 for which

P(x) +kb" = 4(y)
py) +hb " = ¢(2).

Proof: For the first part, we have
n . n .
b (p(x) — (y)) = b" D (@i —y)b" = D _ (@i — y)b"’
i=1 i=1
which is an integer. Now, for the second part, by Lemma 5.4.2, we have:

lp(x) —d(y)| < 267" = ¢(x) + kb™" = é(y)

for a suitable choice of & < 2. The same holds for y and z, but

|¢(x) — ¢(2)| > 267"
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and thus
|6(x) — d(2)| = |¢(x) — ¢(y) + ¢(y) — p(z)| = [ = k™" —hb™"| = [k + h[b™"
and this concludes the proof by showing that |k + h| > 2. O

We can now prove that the chain is bounded transitive with global waiting time 0
whenever the base b is greater than 2.

Theorem 5.4.1 If b > 2, then the chain (Ry, fn)ncw 8 bounded transitive with global
waiting time 7 = 0.

Proof: We just have to show that every V has no counterimages which are still V’s. Sup-
pose, by contradiction, that (x,y,z) € V(T),, co,) and also (xa,yf,2zv) € V(Tj+1,C0n+1),
for some choice of o, 3,y € X. Then, by Lemma 5.4.3, there are k,h, k', h' € {—2,...,2}
such that |k + h| > 2, |[K' + h'| > 2 and

$x)+kb " = ¢y)
Ply)+hb " = ¢(z)
$(xa) + Kb "D = ¢(yp)
$(yB) + Ko ™D = g(zy).

This implies:

d(x) + ab~ (1) 4 prp—(n+1) — Hly) + Bb=(n+1)
B(y) + b= 4 ph=(tD) = () 4 4p=(n+D)

and thus
¢(x) + (e + k)b~ (") = ¢(x) + kb + go~ (")
¢ b=l = ¢(y) + Ao 4 b= ()

(= B+ Kb~ (D) = kp—n
(8 — v+ Ao~ (D) = ppn

a—B+k =kb
B—~+h = hb.

Adding these equations memberwise, we obtain
a—vy+k +h =(k+h)b.

Its right-hand side has absolute value at least 3b (because |k + h| > 2), while its left-hand
side is clearly at most |a — 7| + |k’ + A’[, which is not greater than 2b — 2 + 4 = 2b + 2
(because |k’ + h'| < 4). So, for equality to hold, one should have 3b < 2b+ 2 which implies
b < 2, contradicting the hypothesis b > 2. O

Notice that Theorem 5.4.1 is not true when b = 2 as the following easy example shows.
The triple (0 0,1 0,1 1) is a V of R2 (they represent the values 0, 1/2, 3/4 respectively).
Yet, the triple (0 0 1,1 0 —1,1 1 —1) is still a V of R3 (the values are, in this case, 1/8,
3/8, 5/8). Nevertheless, the chain is bounded transitive also in the case b = 2, but with
resolution time 1:
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Theorem 5.4.2 If b = 2, then the chain (Ry, fn)new is bounded transitive with global
waiting time 7° = 1.

Proof: The proof is analogous to that of Theorem 5.4.1. Suppose that (x,y,z) is a V of

(Tn,con), (xa,yB,27) € V(Tny1,c0n41) and (xad!,yB3',2vY') € V(Ty12,c0on42). Then,
we have:

1|
< S

¢(x) + kb7"
b(y) + hb™"
P(xa) + K'b-(+D)
¢(yB) + 1o~ ("D
P(xad!) + Kb~ (2)
$lyBp) +n'o D = ¢

for some k, h, k', h', k" h" satisfying the constraints. This means:

I
<

Il

S S
A~ AN N AN N/~

N

\/

which implies
(a ,3) (n+1) ( ,8’ + k”)ﬁ_(n+2) — kb
(B—y)b D 4 (8" — 4 + h")B~ (D = hp .,

Adding these equations memberwise, we obtain:
(o — 'Y)b_(n+1) + (O/ _ ’)’I +E h//)b—(n+2) = (k+h)b™

(@ —Y)b+o —y + k" +1h" = (k+ h)b?
o — +E"+ 1" = (k+ h)b* — (o — 7)b.

Substituting b = 2:
o =+ K"+ b =4(k+h) —2(a—7),

and an exhaustive case analysis shows that this is a contradiction. O

Clearly, this is not the only way one can use to prove that co., is transitive, neither
the more direct one, but it gives us much more information, because it tells us that not
only transitivity is reached, but every “local” counterexample to transitivity is resolved
after only one step (two steps at most, in the binary case).

The same results hold for the usual positive digit representation, even though the
situation trivializes in that case: it turns out, as one can easily see, that

e for every n, the elements of T,, are mapped injectively to the unit interval by ¢ (i.e.,
unlike in the negative digit representation, we do not have multiple finite sequences
of the same length corresponding to the same number);

e the approximation interval induced by a finite sequence x € T,, is a closed interval of
length b= whose left extreme is ¢(x); thus, two such intervals intersect in at most
one point;
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e the previous observation implies that (7, co,) is simply the graph Py (the path
with " nodes), and the projection f,, simply shrinks every subpath of length b to a
single node;

e as a consequence, the only V’s of (T},,co,) are those triples corresponding to three
consecutive nodes in the path, which can never be image of any V at the next level;
this means that the global resolution time in this case is 7* = 0, regardless of the
base used for the representation.

We shall return to the negative digit representation later on, proving that it is possible to
completely re-construct the usual (Euclidean) topology of the unit interval by means of
an approximation cochain of finite tolerance spaces.

5.5 Approximation sequences and inverse images of topolo-
gies

In the previous sections, we have tried to convince the reader about the importance and
usefulness of w-cochains of tolerance spaces for describing a complex space (in the previous
example: the set of real numbers) via an increasing set of approximating (finite) spaces.
Of course, what we were missing until now was a way of obtaining the topological structure
of the limit object as a limit of topologies on the approximations. In this section, we shall
pave our way towards the definition of a topology on the limit, by using the notion of
inverse image of a topology.

We shall be considering tolerance spaces on which a topology is defined, and call them
topological tolerance spaces. When no confusion arises, if 7 is a topological tolerance
space, we let © (possibly with self-explaining sub- or superscripts) denote the topology.
From now on, we shall use the words approzimation (topological) sequence to indicate
an w-cochain in the category ¢TolSp (and the adjective “topological” is added if each
tolerance space is also topological).

First, consider the following result, which is a slight generalization of Theorem 1.13.2
of [Gaa64]:

Theorem 5.5.1 Let I be an index set and (f; : X — Y;)ier be a family of functions.
Suppose that, for each i € I, there is a topology 2; defined on Y;. Then, there is a weakest
topology Q on X such that the f;’s are (topologically) continuous; Q) is generated by the
subbase

S={f10):ieI,0ec 0}

Proof: First, observe that at least one such topology exists (the discrete topology on X).
Note also that S is in fact a subbase of a topology on X; in fact, if z € X, take any ¢ € T
and consider f;(z): this is a point of Y;, and clearly, taking any open set O € §; such
that fi(z) € O, we have = € f{l(O); so, there is an S € S such that z € S, as required.
Let now Q be the topology generated by S. Clearly, every function f; is continuous with
respect to this topology. Moreover, if €' is another such topology, then S C ', and so
Q C Q': this proves minimality. O
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The topology © of Theorem 5.5.1 is called the inverse image of the family (€;)ier
under (f;)icr- In the special case |I| = 1, the theorem can be rephrased in the following,
more canonical, form:

Corollary 5.5.1 If f : X — Y is a function and Q is a topology on Y, then there is a
weakest topology f~1(Q) on X such that f is continuous. In particular, a set is open in
1) if and only if it is the counterimage of some open set in ).

Proof: We just have to show that, in this case, the set S = {f; 1(0) :4 € I,O € Q;} is in
fact itself a topology. Clearly, § = f~'(#) € S and X = f~1(Y) € S. Moreover, for any
two open sets O1, 05 € Q, one has f~1(01 N Oy) = f~1(01) N f~1(Oy). Finally, if (O;);er
is a family of open sets, then f 1 (U;c;O0;) = Userf 1 (0;). O

The following result states that the technique of inverse image topology transforms

also the inverse limits in the category ¢TolSp into inverse limits in the category Top of
topological spaces with continuous functions®.
Theorem 5.5.2 Let (7;, fi)icw be a topological approzimation sequence. Moreover, sup-
pose that Ty is the inverse limit of the sequence, with projections m; : Too — T;i. The
topology Qoo which is the inverse image of the family (Q;);cw under (m;)ic, makes To into
a topological space which is also the inverse limit of the approximation sequence considered
as an w-cochain in the category Top.

Proof: We already know that f; o mj11 = m;, by Theorem 5.3.1. Now, suppose that (X, Q)
is another topological space, endowed with a family ¢; : X — X; of continuous maps such
that f; o ¢jr1 = ¢;. Define h: X — X, by putting

h(z) = (¢i(z))icw-

Now, m;(h(z)) = (h(z)); = ¢i(z), so m; o h = ¢;, as required. Moreover, h is continuous.
In fact, let ' be the inverse image topology of the family (€2;);c,, under (¢;);c.,: clearly,
Q' C Q, because ' is the weakest topology for which the ¢;’s are continuous. In order to
prove that h is continuous, using Lemma A.3.1, we just need to show that h (7' (0)) € Q
for all s € w and O € ;. But

Bl (0)) = {w € X+ ha) € 77 (0)} =
={z € X :m(h(z)) €0} = {z € X : $i(x) € O} = ¢7}(0)

and ¢;*(0) is an element of the standard subbase for ', and thus ¢; '(0) € Q also. O

In other words, given a topological approximation sequence (7;, fi)icw, there is a stand-
ard way to topologize the limit of a sequence, and obtain a topological tolerance space
which is indeed the limit of the corresponding cochain both in the category of tolerance
spaces and in the category of topological spaces.

SWhen dealing with topological tolerance spaces, the use of the word “continuous” may be ambiguous
(because we do not specify whether we are considering tolerance or topological continuity). To solve this
problem, we usually put an explaining adjective near the word; nevertheless, when no confusion arises
(or when a function is both topologically and tolerance continuous) we shall not indulge in any further
explanation.
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An important case of the previous construction happens when all the topologies €2; are
discrete (i.e., ; = p(X;) for every 7). In this case, we say that the sequence is discretely
topologized.

Property 5.5.1 Let (T;, fi)icw be a discretely topologized approximation sequence. Then,
the limit topology Qs has the set

Soo = {m; 1(z) :i Ew and z € X;}
as base.

Proof: We already know that a base for Q. is given by the set S = {n;}(0) : i €
wand O € Q;}, and clearly Soc € S. Moreover, every open set O € ; is the union
of singleton open sets, and 7; '(0) = Ugeom; '(z). Thus Sy is really a subbase of Qq.
Now, to prove that this is a base, suppose that x € w;l(y) N ﬂ]l(z) with 1,7 € w,
y € X; and z € X;. This means that mj(x) = z; = y and 7j(x) = z; = z; suppose,
without loss of generality, that i < j. Then, since fg (zj) = 4, we have that ff(z) = .
So, if an infinite sequence belongs to 7r;1(z), it must have a y in the i-th position, and

thus it also belongs to 7; '(y). In other words, 7rj_1(z) C ;7 '(y). This way, we have

XEWJ-_I(Z)ZWj_l(Z)ﬂWi_I(y). O

5.6 Reduction of tolerance spaces and direct images of to-
pologies

In this section, we shall briefly discuss another well-known technique for inducing topo-
logies, and use it to define the quotient topological space relative to a reduced tolerance
space.

The following, which dualizes Corollary 5.5.1, is a standard theorem of general topo-

logy:

Theorem 5.6.1 (Gaal [Gaa64], Theorem 1.13.3) If f : X — Y is a function and Q
is a topology on X, then there is a strongest topology f(Q) on'Y such that f is continuous.
In particular, a set is open in f(Q) if and only if its inverse image is open in Q. O

By using this result, one can introduce the notion of quotient space. Let (X,Q)
be a topological space and R be an equivalence relation on X; there is a natural map
g : X — X/R which maps every element z of X to the equivalence class [z]r. Now, one
can take the 1¥g(€2), which is the strongest topology on X/R for which g is continuous.
The topological space (X/R,1¥r(€)) is called the quotient space of (X, Q) with respect to
R, and the topology ¥ () is usually denoted by Q/R.

The notion of quotient space is very useful, and corresponds to the process of “identi-
fying” some points in a topological space. For example, if one considers the unit interval
[0,1] (as a subspace of R, with the Euclidean topology), and identifies 0 and 1 (i.e., takes
the least equivalence relation R on [0, 1] for which 0 R 1), the quotient space obtained is
(homeomorphic to) the circle S*.
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We shall apply the above introduced concepts to the special case of reduced tolerance
spaces. Let T be a tolerance space; for each z € X, define co(z) = {y € X : z coy}, and
let

z =y iff co(z) = co(y).

We have that

Lemma 5.6.1 The relation = is an equivalence relation; moreover, if x =~ x' and y ~ v’
then
zeoy < z' coy.

Proof: Tt is clear that ~ is an equivalence relation. Now z ~ z’ precisely means that, for
all z, zcoz <= z'coz. Sowehave zcoy <= 1'coy < z'coy . O

Thus, we can define a new tolerance space 7*, whose underlying set is X/ =~ and with
tolerance relation co* described by putting [z] co* [y] if and only if z coy (this is well
defined, in virtue of Lemma 5.6.1). The space 7™ is called the reduction of 7, and we say
that 7T is reduced if and only if it is isomorphic to its own reduction, i.e., 7 = T*. Clearly:

Property 5.6.1 The following properties of a tolerance space T are equivalent:
1. T is transitive;

2. T* is totally disconnected. O

Now, if we have a topological tolerance space 7, we can consider the quotient topology
0* = Q/ = on the reduction 7*: the so-obtained topology is often called the reduced topo-
logy (and the corresponding space is called the “reduced (topological) tolerance space”).
The following result will be very useful in the sequel:

Theorem 5.6.2 Let T = (X, co,Q) be a topological tolerance space, and let (Y,Q') be
another topological space. Suppose that f: X —'Y is a function such that:

1. f is a surjective, continuous map;
2. for any two z,y € X, one has x =y if and only if f(z) = f(y).

Then, there is a continuous bijection h : (X*,Q*) = (Y,Q'); moreover, if f is open, then
h is a homeomorphism.

Proof: Define a function h : X* — Y by letting h([z]x) = f(z). This is well-defined,
because = = y implies f(z) = f(y). Moreover, h is injective (because f(z) = f(y) implies
x = y), and surjective (because f is). Now, let 1 : X — X* be the natural map = — [z]x.
Remember that (Theorem 5.6.1) O € Q* if and only if 9 1(0) € Q. So, suppose O € €)'
h=Y(O) is open if and only if 1~ !(h~1(0)) is open, which is equivalent to saying that
{z € X : f(z) € O} = f~1(0) is open. But f is continuous, so we conclude that h is
continuous also. For the continuity of the inverse (in the case that f is open), suppose
that O is open in Q*, i.e., 9 1(0) € Q. Now f(¢ 1(0)) = f(O) which is open, because f
is an open map. O

As a final observation, note that, in the statement of Theorem 5.6.2, one can substitute
x = y with z co y, whenever 7 is transitive (because in that case = coincides with co).
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5.7 Approximating the Cantor set

In this section, we shall apply the techniques developed for topologizing the limits of
approximation sequences to the case of positive digit representations of real numbers in
the unit interval. In particular, we will show that the reduced limit topology is related
with the standard Euclidean topology of [0, 1], when discrete topologies are taken on the
approximation sequence: more precisely, we shall obtain a space which is homeomorphic
to the standard Cantor set.

We first introduce some notation, which is similar to that used for negative-digit rep-
resentations, with the only difference that here we are going to represent (approximations
of) real numbers by (finite) sequences of unsigned bits. For every n € w, we let R,, denote
the set {0,1}", and use Ry for {0,1}* (the set of infinite binary sequences). Moreover,
as usual, we use < to mean the prefix relation on the set {0,1}* of (finite and infinite)
sequences of bits. For sake of simplicity, we assume that the indexes corresponding to each
sequence start from 1.

We define a function:
v: {0,1}* — R

x| Zq

X =Y o -

mapping each sequence to a real number. We have that:

Property 5.7.1 For all x € {0,1}¥, we have p(x) € [0,1]. Moreover, for every a € [0, 1]
there exists an infinite sequence x € {0,1}¥ such that o(x) = .

Proof: Similar to Lemma 5.4.1. O
Now, for each n € w, one can define a tolerance relation cof on R,,, by putting:
x cop y iff [p(x) — p(y)] <27

The tolerance space R, = (R, coX), seen as an undirected graph, is simply a path of 2"
vertices. Moreover, we define for all n € w, a map f, : R,+1 — Ry, as follows

fn(wlwg...wn44) = T1X2..-Tp-
Observe that:
Lemma 5.7.1 The function fp : Ryy1 — Ry is (tolerance) continuous.

Proof: Suppose that x coffﬂ y; then:

n

o(fa(x)) — o(fa¥)| = ;g— > %=

n+1 n+1
Yi

Yn+1
2n+1

T Tn+1

% n+1 %
=1 2 2 i=1 2

+

Yn+1 — Tn+l
= “P(X) —‘P(}’)‘aniﬂn <

B 11 11

and so f,(x) cof fu(y). O
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Figure 5.5: The first levels of the approximation sequence (R, fn)new

Fig. 5.5 shows the first four tolerance spaces of the approximation sequence: the
dashed lines give the maps f,.

By the same argument used for negative-digit representations, the inverse limit of the
approximation sequence (R, f,) is (isomorphic to) R, with projections 7; : Ry — R;
defined by letting m;(x) be the prefix of length ¢ of the sequence x. Instead of using the
notion of resolution time, we directly prove that the sequence has transitive limit by first
showing that:

Lemma 5.7.2 For any two distinct sequences X,y € Ry, the following are equivalent:

1. there is some finite sequence z such that x = z10 and y = z01 (or viceversa), where
0 and 1 denote the infinite sequence of 0’s and 1’s, respectively;

2. the relation x cof y holds;
3. we have p(x) = ¢(y).
Proof: (1) = (2). Let k = |z|. We shall prove that, for all i, 7;(x)coFm;(y), considering

two cases. If ¢ < k, then m;(x) and m;(y) coincide (they are both the prefix of length i of
the sequence z). If 1 > k, then

(2
1
lp(mi(x)) — p(mi(y))] = <P(Z)+W—<P(Z)— Z on| =
n=k+2
1 =S | R S 1 1
T |9k+1 T 9k+2 Zo 2| W( a +2i—(k+2)+1) ~ 9
n=

so m;(x) cof* m;(y), and thus x coZ y;

(2) = (8). Just observe that |¢o(x) —(y)| is at most equal, for every i, to |p(m;(x)) —
o(mi(y))| + 02,12 ™ which is at most (using the hypothesis) 2/2¢ = 1/2/"1. Since this
is true for every %, we obtain the result.

(83) = (1). Let z be the longest common prefix of x and y (this must be finite, because
x #y). Suppose w.l.o.g. that x = zlv and y = z0w. Now, if k = |z|, we have:

o) = (@) + ooy + L)
p(w)

¢y) = »@)+ G
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Since p(x) = ¢(y), we must have 1+ p(v) = ¢(w). Now, since ¢(v),p(w) € [0,1], it
must be the case that ¢(v) = 0 and ¢(w) = 1. The only sequences with values 0 and 1
are 0 and 1 respectively. O

So, the relation cot is transitive, and moreover it coincides with the equivalence rela-
tion induced by the fibres® of ¢.
Note that:

Corollary 5.7.1 Each equivalence class of col contains either one or two elements.
Moreover, an equivalence class contains two elements if and only if it is mapped (by ) to
a dyadic rational different from 0 and 1.

Proof: The first part of the statement directly follows from the implication (1) <= (2)
of Lemma 5.7.2. We only have to prove that ¢(x) is a dyadic rational (different from 0
and 1) if and only if x has the form x = z10, which is shown by an easy calculation. O

We are now ready to prove the main theorem of this section, concluding that the
inverse image topology induced on R is actually (homeomorphic to) the Cantor set.
Before doing this, we need a technical lemma:

Lemma 5.7.3 Let B be the family of subsets of R of the form (a,b) where a,b are dyadic
rationals. Then, B is a base for the standard (Euclidean) topology on R.

Proof: Tt is clear that B is a base for a topology Q. Let B’ be the family of open intervals
(which is a base for the standard topology €'): we must prove that Q = Q. Since B C B,
we have that ' is stronger than Q (using the observation after Theorem A.3.1). We now
prove, using another time Theorem A.3.1, that € is stronger than Q'. Let (a,b) be an
interval, and a < z < b: since the dyadic rationals are dense in the reals, there will be two
dyadic rationals a’, b’ such that a < a’ <z < b < b. So we are done. O

We can now prove the theorem:

Theorem 5.7.1 Consider the discretely topologized approzimation sequence (R, fi)icw-
Then, there is a continuous bijection from its limit (R}, %) to the unit interval (with
the usual topology).

Proof: Consider the function ¢ : Ry, — [0, 1]. This is a surjective map (by Property 5.7.1),
and moreover satisfies the assumption (2) of Theorem 5.6.2 (in virtue of the observation
made after Lemma 5.7.2). So, in order to use Theorem 5.6.2, we just have to prove that
 is continuous.

Continuity. By Lemma 5.7.3, a subbase for the topology on [0,1] is given by the family
of all intervals of the form [0,a) or (e, 1], where 0 < a@ < 1 and « is a dyadic number.
Using Lemma A.3.1, to prove continuity we just have to show that the counterimage via
@ of every interval of the above form is open (in the limit topology). We do this only
for intervals of the form [0, «). We already know that « has a representation of the form

SEvery function f : A — B induces an equivalence relation ~; on the set A, by putting = = y if and

only if f(z) = f(y).



5.7. Approximating the Cantor set 107
x = z01, with k = |z| (and a = ¢(z) + 2,9%) Now, let A ={w € Ry : p(w) < ¢(z)}, and

put .
X = (U m (w) U (U 7Ly (010))
weA €W
where 1° denotes a sequence of 4 1’s. This is an open subset of R, (it is a union of the
elements of the subbase, as explained in Lemma 5.5.1). We shall prove that ¢ ([0, a)) =
X, thus proving continuity.
Let y € X; we have two cases. If y = wv, where w € A, then
p(v) 1

ply) = w(W) + 5= < p(w) + 55
and, since w € A, p(w) < ¢(z), ie., p(w) < ¢(z) — 2%; so p(y) < ¢(z) < a. Otherwise,
we have y = z01°0v, whose value is

o(y) <¢(z) + 2,%

because 1°0v is a sequence which must contain a 0 somewhere.

For the converse, suppose that § € [0, ), and let y be a representation of g (i.e., ¢(y) = ).
We will show that y € X. In fact, consider the decomposition of y as y = mx(y)v; we
have three cases:

o if p(mr(y)) < ¢(z) then mx(y) € Aand soy € X;

o if p(mi(y)) = (z) then mi(y) = z (because the function ¢ is injective when re-
stricted to each finite level); moreover, v cannot start with a 1, because otherwise
the value of y would be at least (z) + 2,6% = «. Finally, v cannot have the form
v = 01, because we would have the same problem as before; so, necessarily, y € X;

e the case ¢(mi(y)) > o(z) is impossible, because this would mean ¢(m(y)) — 2% >

»(z); so we would have 8 = p(m(y)) + %kﬂ > p(z) + 2% + %%l, which is in turn
equal to a — le+l + %ﬁ. But now 8 < « implies a — 2k1+1 + %ﬂ < a, ie.,

¢(v) < —3: a contradiction! O

Note that in this case we have no homeomorphism, though, because the map ¢ is not
an open map. As a matter of fact, we shall prove in a while that the limit space we have
built is actually homeomorphic to the (standard) Cantor set.

The Cantor set is the set C' of all those real numbers which can be written as 3272, £,
where ¢; € {0,2} for all i > 0; since C' C [0, 1], we can endow it with the subspace topology
induced by the Euclidean topology on R.

Theorem 5.7.2 The space (R, 2oo) is homeomorphic to the Cantor set.

Proof: Define a map p : R, — C by putting

x|
2x;
p(x) = 3—12

=1
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The function is clearly well-defined (i.e., for all x we have p(x) € C) and its restriction
to R is surjective. The function is also injective on the same set; in fact, suppose that
p(x) = p(y), i-e.,, 2 5 = 372 %. Working by induction on i, we prove that z; = y;:

e suppose, by contradiction, that z; = 0 and y; = 1 (the other case is proved ana-
logously): then %, &£ < 37, 3—1, which equals §2 = &. Conversely Y32, u> 1,
which contradicts p(x) = p(y);

e the inductive step is proved much in the same way.

The proof that p is continuous is similar to the one we gave in Theorem 5.7.1 for ¢, and
thus omitted. We prove that p~! : C — R, is continuous; suppose that O C C is open
(i.e., for all z € O there exists €, > 0 such that, for every y € C, if [x—y| < ¢, then y € O).
We prove that p~1(O) is open. Let x € p~!(0), and take n as large as 37" < €p(x)- 1f
y € 1, (7, (x)) then y = m,(x)y’ and x = m,(x)x’. So, we have:

)l

< 6p(x)‘p(xl) - p(y,)‘ < €p(x)

and so, since O is open, p(y) € O, i.e., y € p~1(O). Since this is true for every y, we
obtain that
vx € p~H(0)In € w. T, (T (%))

which implies that p~1(O) is open. O

Notice that, as a consequence, we obtain the following standard result, which is proved
in a different way in Gaal [Gaa64] (Lemma IV.9.3):

Corollary 5.7.2 The unit interval is a continuous image of the Cantor set.

Proof: This just combines the results of Theorems 5.7.1 and 5.7.2. In fact, let p be the
homeomorphism built in Theorem 5.7.2, h be the continuous bijection of Theorem 5.7.1,
and v be the natural injection of 7 into 7* (which is continuous, by definition of reduced
space). Then, the function h o1 o p~! is continuous (because it is a composition of
continuous maps) and surjective (because all the functions are such). Note that 1) is not
injective, and thus the composition will not be a bijection. O

5.8 Approximating the unit interval

In this section, we shall return to the negative digit representation for the real numbers
we discussed in Section 5.4, and study in detail the structure of the limit space, showing
that the topology induced in the usual way is actually homeomorphic to the unit interval.
For sake of simplicity, we shall limit ourselves to the case of a 2-NDR, and thus put X =
{1,0,1}, where 1 abbreviates —1. The function ¢, and the tolerance spaces R, = (T}, co,)
are defined as in Section 5.4, taking b = 2.

This time, the inverse limit Ro = (Te0,C0x0) is defined by taking T, = 3¢, with
projections 7y : Roo — Ry defined by

T (X) = T122 - - TR
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Figure 5.6: The approximation sequence (R, f) (n =0,1,2)

and limit tolerance relation given by
X COoo ¥ iff VE € w.mi(x) cog mx(y)-

We have already proved (Theorem 5.4.2) that co. is an equivalence relation, by using
the technique of intransitive triples. Now, we shall re-obtain the same result in a direct
fashion, by proving that co, is indeed the equivalence relation induced by the fibres of ¢.

Lemma 5.8.1 For all x,y € Ty, we have that X cox y if and only if ¢(x) = ¢(y)-

Proof: Suppose that xcox y; then, for all k¥ € w we have 7 (x) cog m(y). Thus |¢(mg(x)) —
d(me(y))| < 267F. Hence, if we decompose x = 7 (x)v and y = 7;(y)w, we obtain

|6(x) = d(y)| = [p(mr(x)) + (V)b — p(mr(y)) — p(w)bF| <
< [p(mk(x)) — P ()] + [(v)DF — p(w)b~F| < 267F 4 267F = 4pF

and this is true for all k, so ¢(x) = ¢(y).
For the converse, suppose that ¢(x) = ¢(y). Then, using the same decomposition for x
and y as before, we obtain that, for all k € w:

(i (x)) — $(m(y))] = [d(x) — $(V)b~F — $(y) + p(w)b™*| =
= b |g(w) — p(v)| < 267"

and thus 7, (x) cog mr(y) holds for all k € w. O

So, ¢ establishes a one-to-one correspondence between the equivalence classes of R
(i.e., the elements of R ) and the points of [—1,1]. Notice that, in general, each equi-
valence class may contain infinitely many point (differently from the case of positive digit
representation, where each class contains at most two elements, as we showed in Corollary
5.7.1). The reason is that, in this case, the structure of each level is much more complex
than before, owing to the fact that the intersection between intervals may be non-trivial
(of non-zero measure), and moreover the same interval may have more than one repres-
entation on each level. For example, the two sequences 11 and 01 are both mapped by ¢
to the same real number —% + i = —i, and so the corresponding points are equivalent in
the space Ro. Said otherwise, the tolerance spaces R, are not reduced. In Fig. 5.6, we
present the first three levels of the approximation sequence, with the same conventions as
before (the dashed lines represent the truncation functions f;).

As it is easy to see, the tolerance spaces in the approximation sequence tend to have a
structure which gets exponentially more and more complicated; in order to have a better
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Figure 5.7: An “interval” representation of the approximation sequence

understanding of what is really going on, we present in Fig. 5.7 the “interval” version
of Ry, R1 and Ro. For each tolerance space, we have represented each sequence x € T;
(i = 0,1,2) by the interval it represents [¢(x) —b*, #(x) + b *]. Interval overlapping gives
rise to the presence of an edge in the tolerance space.

We are now ready to prove the main theorem of this section:

Theorem 5.8.1 Consider the approzimation sequence (R, fn)new, with each space dis-
cretely topologized. Then, the reduced limit (R}, Q%) is homeomorphic to the unit interval
[0,1].

Proof: We shall make use of Theorem 5.6.2, proving that ¢ : Too — [—1,1] is a continuous
open surjective map satisfying the constraint (2) of Theorem 5.6.2. The map ¢ is surjective,
by Lemma 5.4.1, and satisfies the constraint, by Lemma 5.8.1. So, we just need to show
that it is continuous and open.

Continuity. We already know that a subbase of [—1,1] is given by the family of intervals
of the form [—1, @) or (a, 1], with —1 < a < 1 dyadic (see Lemma 5.7.3). So, in order to
prove that ¢ is continuous, using Lemma A.3.1, we just have to check that the counter-
image of each of these intervals is open: we do this only for the case [—1, ). Since « is
a dyadic rational, it will have a representation’ of the form x = z01, with k£ = |z| (and
a = ¢(z) + 2,6%) Now, let

A={weT;: p(w) < $(z)}
and, for each i € w, .
B ={w € Tiyi12: ¢(w) < ¢(201°0)}.
Define
X = (UweAﬂlzl(W)) U (UiEw UweB; ch_ii+2(w)) )

"To be more precise, this happens unless o = 0; but we can easily get rid of this case, by observing
that the intervals [—1,0) and (0,1] can be obtained as Ugso[—1, —27%) and Ux>0(27%, 1], respectively.
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which is an open subset of T, because it is a union of elements of the subbase Sy (see
Property 5.5.1). We shall prove that ¢~!([-1,a)) = X.
For the right-to-left inclusion, let y € X; we have two cases:

1. If y = wv with w € 4, then ¢(y) = dp(w) + & < ¢(w) + &; but $(w) < ¢(z),
ie., p(w) < ¢(z) — 555 50 ¢(y) < ¢(z) < @, and thus finally (y) € [—1,a), which
implies y € ¢~ 1([-1,a)).

2. Suppose there exists an ¢ € w such that y = wv for some w € B;. Then, we have:

#y) = d(w) + 2 < ga0rio) + PV

k+i+1 i—1
1 d(v) 1 1 P(v)
=@+ 2 Gtomas —¢@tgmmd 5t g -
j=k+2 7=0
1 1—%  ¢(v) 1 21 é(v)
= ¢(z) + 2+ I T ki = ¢(2) ok+1 9 oktit2 =
201 1 20t —1 I
= ¢(z) + oh it T pktite (2) + okt X7 9RtT T ohtite
2i+1 _ 2i+1 -1 1
ot T rre . T O gpriz <@

so (y) € [-1,0), Le, y € 47 ([-1,0)).

For the left-to-right inclusion, suppose that ¢(y) = g € [-1,a). We prove that y € X.
Decompose y as y = m,(y)v; we have two cases:

1. If ¢(mi(y)) < ¢(z): then mx(y) € Aand soy € X.

2. If ¢(mi(y)) > ¢(z), suppose, by contradiction, that there is no prefix of y (longer
than k + 1) belonging to U;c,B;. This would mean that, for all 7 € w,

1—1
A(Mrrir2(y)) > ¢(201i0) = ¢(z) + Qk% Z 2% -
j=0

_ 1 2-1 20201 1
== o Tkt - Ot ToRmr T T YT Sk
But ¢(y) > d(mprira(y)) — 2k+++2 and thus, using the previous inequality,

1 1 3
¢ly) > a— oktitl  gktitz YT Qk+ir2

for all 7 € w. This means that 8 = ¢(y) > «, contradicting the hypothesis.

Open map. In order to prove that ¢ is open, let X C T, be an open set, and a € ¢(X).
This means that there is some x € X such that a = ¢(x). Since X is open, there must
be some k € w and v € Ty such that x € 7, *(v) C X. But a = ¢(x) € ¢(m},'(v)) =
[p(v)—27F p(v)+27%] C #(X), so there is a whole open ball including « entirely contained
in ¢(X). Thus ¢(X) is an open subset of [—1, 1]. O
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Figure 5.8: The approximation sequence (R, fn) (n =0,1,2)

5.9 Approximating the circle

In this section, we shall provide an approximation sequence for the circle, by slightly
modifying the one previously given for the unit interval. This is a way to suggest how
complex (topological) spaces may be described by a sequence of finite approximations,
with discrete topologies.

Let R, = (T,,co,) be the approximation sequence of 2-NDR, as considered in the
previous section. We define a new sequence R! = (T,,,col,), by letting

cop, = cop, U {(T",1™),(1",T")}.

In practice, the tolerance space R, is the same as R,, but has just one additional edge
connecting the two extreme points corresponding to a sequence of 1’s and a sequence of
1’s. Fig. 5.8 shows the first three levels of this approximation sequence: the diagram is
obtained by “folding” the one presented in Fig. 5.6.

Now, we would like to characterize precisely the limit tolerance relation for the space RL.
This is done in the following

Lemma 5.9.1 Let x,y € Too be two infinite sequences. Then, xcol,y holds if and only if
either ¢p(x) = ¢(y) or {p(x),d(y)} = {—1,1}. Thus, in particular, the sequence (R, fn)
1s globally transitive.

Proof: The “if” part is a straightforward consequence of Lemma 5.8.1 and of the way
we defined col,. For the other direction, suppose x col, y; this means that, for all k¥ € w,
7k (x) cof, m(y). Let cof = cof \ cox = {(T*,1%), (1%, T%)}; note that m(x) coj m(y) implies
that, for all ¢ < k, also m;(x) co} mx(y). So, we can put

I = {k : m(x) co} m(y)}

which is, for the above remark, a downward-closed set of indices. If I is infinite, then
clearly {x,y} = {1,1} and thus {¢(x),¢(y)} = {—1,1}; if I is empty, then necessarily
7k (x) cog mx(y) holds for all k, and so ¢(x) = ¢(y) (by Lemma 5.8.1).



5.9. Approximating the circle 113

Now, suppose that I is finite and non-empty, and let k¥ = max I. Without loss of generality,
we can suppose that x = T°v and y = 1*w, where v does not start with a I, or w does
not start with a 1. Since m;(x) co} m;(y) holds also for ¢ > k, necessarily we must have
m;(x) co; m;(y) for every i > k; i.e., for all 4 > k, we have:

6(m () — B(ms(y))] < - (51)
But: .
(mi(x)) = p(T°) + ¢(7Tk2,§(v))
and .
Blriy)) = p(1%) + L)
Now, observe that
k W | 151 1k -1 12t
M) = =32y 311 @
and so, for every ¢ > k
— 2k Tk—i\V k_ Tk—i\W
Hi() — dlmi(y)) = T + P T2 dmeilw)
22" (mp_i(v)) — p(me—i(w))
S 2k 2k
In order to make (5.1) hold, we must have:
¢(7Tk—i(v)) _;i;c(ﬂ'k—i(w)) +2 -2/ < 21'171 ) (5‘2)
But ¢(mgi(v)) — d(mp—i(W)) € [~2,2], and so
P(m—i(v)) —;ﬁk(ﬂk—z'(w)) +t2_ 5¢ 2, ;ik iy

thus, its absolute value belongs to [2 — 2,6%2,2]. For the inequality (5.2) to hold, it is
necessary that

1 1
2— 9k—2 < 9i—1
1 2
ST <
2420k
This should hold for every ¢ > k, and k is fixed. So, in particular
2 21'*]6
8 < lim 2he T gk
1—00 2t
which is impossible. O

So, the limit space R., is a transitive one, with equivalence relation which is the same
as €04, but which moreover equals the two sequences 1 and 1. Using the result of Theorem
5.8.1, we obtain that
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Corollary 5.9.1 Consider the approzimation sequence (R.,, fn)new, with each space dis-
cretely topologized. Then, its reduced limit is homeomorphic to the circle® S*.

Proof: Just remember that S* is homeomorphic to [0, 1] quotiented with the equivalence
which identifies 0 and 1 (see Gaal [Gaa64], Section 14.1). O

8The (unit) circle is the subspace of the ordinary (euclidean) space R? induced by the set S* = {(z,) €
R?: g +y* =1}



Chapter 6

Tolerance spaces and semiorders

6.1 Order and disorder in measurement theory

In the previous chapters, we have been concerned with general tolerance spaces, consid-
ering the indifference relation as a “primitive” one, and without investigating the way in
which it was generated or produced. In this chapter, we shall restrict our attention to a
special but very important class of tolerance spaces, namely, those which are generated
by some (particular) kind of partial order!. The interest of such spaces stems from the
theory of measurement, as better explained in the rest of this section.

Fred S.Roberts, in his encyclopaedic work on Measurement Theory [Rob79], states that
a major difference between a “well-developed” science such as physics and some of the less
“well-developed” sciences such as psychology or sociology is the degree to which things are
measured. For this reason, we think that giving firm foundations to the abstract theory
of measurement would be of use not only for physics — where well-established methods of
measurement are a matter of fact — but also, and especially, for those social sciences which
still miss formal tools for doing measurements and reasoning about their results.

When speaking of what measurement is about, Bertrand Russell [Rus37, Chapter XXI]
says that:

Measurement of magnitudes is, in its most general sense, any method by which
a unique and reciprocal correspondence is established between all or some of
the magnitudes of a kind and all or some of the numbers?, integral, rational,
or real, as the case may be.

Of course, we expect this assignment of numbers to magnitudes to respect certain
basic properties of the represented magnitudes, and to preserve them as properties of the
numbers used for the representation. So, for example, if a certain body A is “heavier”
than B, we expect it to have a greater mass than that of B; and similarly, if A is made
of two (disjoint) subparts, say A; and Ay, we want the mass of A to equal the sum of the
masses of A; and As.

'Part of the results contained here appeared in [Bol96].
%Yet, measuring without numbers can also be a sensible and fruitful activity [Rob79]. (The note is by
myself)

115
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This way of thinking about measurement could be called “quantitative”, as opposed
to another approach which we could term “comparative”. As Smith [Smi93] asserts,
measurement always involves a comparison of the measurand with another object of the
same kind, and we could consider the result of such comparisons as our measurements.

Whilst the quantitative aspects seem to be the most important in physics, the com-
parative ones tend to prevail when social sciences are considered. If we take the position
that measurement is comparison, we should first decide which kind of comparisons we are
going to allow, and what the result of each comparison should be.

Suppose, for example, that we are given a set P of objects and are requested to
measure our preferences about the objects in P. We could allow conjoint preference to be
considered, but we prefer to restrict ourselves to the case of individual comparisons only.
In other words, for any two objects x,y in P we should wonder which is the one we prefer,
if any3. The result of our comparisons will therefore be a binary relation p on P, which
we expect to satisfy two axioms for all z,y,z € P:

1. Irreflexivity: not (zpz), i.e., no element is preferred to itself;

2. Transitivity: if zpy and ypz, then zpz; i.e., if we prefer z to y and y to z then we
prefer z to z.

These axioms express a sort of “rationality condition” in the case of preference: a
truly rational human being should make judgements that satisfy the axioms, or else he is
not acting rationally [Rob79, Rus37]. In the case of physical measurement, these axioms
state that our measuring devices “work well”; or, said otherwise, they define the minimal
conditions under which measurement can take place.

A relation p satisfying the above conditions (1),(2) is called a strict partial order*
(or simply a strict order), and it is usually denoted <, while the pair (P, <) is called a
(partially) strictly ordered set (“poset” for short). When the relation is understood, we
simply write P both for the poset and the underlying set; we always assume P to be
non-empty.

So, the result of a measurement is a partial order < on the set P of measurands;
given two objects z,y in P, they are comparable if z < y or x > y (i.e., y < z); they
are incomparable (other terms: indifferent, indistinguishable, independent) if they are
not comparable, and in this case we write £ ~ y. The relation ~ is sometimes called a
“disorder”, being the complement of (the symmetric closure of) a (strict) order.

What is the correct interpretation for the relation ~ of indifference? This is clearly
a tolerance relation, and, in the case of preference, x ~ y simply means that we are
indifferent among = and y or, in other words, that z and y can be freely substituted for
each other without any gain or loss. Of course, ~ is a reflexive and symmetric relation,

30f course, we could also consider a more complex kind of comparison, where we also have to say “how
much the object we prefer is better than the other”. This goes outside the scope of this thesis, but see
[Rob79] for this enlarged class of comparisons.

“In this section, we shall deal mainly with strict partial orders, instead of the kind of partial orders
defined in Chapter 3, and will thus omit the adjective “strict”. Note that there is a natural one-to-one
correspondence between these two kinds of relations, the only difference being represented by (ir)reflexivity.
Nevertheless, we prefer to work with strict partial orders both because this is more common in the meas-
urement theory area, and because this fits better our needs.
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but it is not transitive in general (when it is transitive, we say that < is a weak order; in
particular, when ~ coincides with the identity of P, we say that < is a total, or linear,
order; see also Chapter 3). Classical examples contradicting transitivity of indifference in
social sciences have been presented in Section 5.1.

If one wants to model a piece of real world, imprecision of measurement should be
respected from the beginning. This approach is well explained by Petri in [Pet80b] (but
see also [Pet96]):

Concerning net theory, we take the standpoint that this imprecision is not
only a consequence of our poor abilities to distinguish by direct or indirect
observation, but it is in the nature of the measuring process itself and in our
relation to the object we measure.

Henceforth, any mathematical technique for modelling processes should take into ac-
count the complex nature of the information flows to be represented, and the influence of
noise as an extra-structure bearing imprecision.

The previous discussion should have pointed out that tolerance arising from incom-
parability deserves a special attention; in the current literature, a graph which is the
symmetric closure of a (strict) partial order is called a comparability graph (see Golumbic
[Gol80] for a general survey on this subject). An incomparability (tolerance) space is thus
the dual® of a comparability graph.

Even though we are not interested in the problem of studying the general case of
incomparability spaces, we present a very simple characterization of comparability, due to
Gouila-Houri [GH62]:

Theorem 6.1.1 (Ghouila-Houri [GH62]) A graph G = (V, E) is a comparability graph
if and only if it does not contain any cycle vy, ... ,v, (withn > 2 odd) such that (v;,vit2) &
E for alli=1,... ,n (where addition is modulo n). O

A cycle like that appearing in the statement of the Ghouila-Houri Theorem is called a
forbidden odd-cycle; thus, an incomparability space is a space whose dual does not contain
forbidden odd-cycles.

6.2 Generalities on semiorders and strong noetherianity

In the previous section, we have explained in some detail the réle of (in)comparability
in the theory of tolerance spaces, as applied to measurement of “scalar” values. Now,
we are going to introduce some more strict axioms on the nature of the orders arising in
measurement, and thus obtain some restrictions on the kind of tolerance spaces generated
in this way.

Even though we have taken the approach of considering comparative aspects only, we
admit the existence of an ideal function giving the “real” measurements of our objects; i.e.,

5The dual of a tolerance space (undirected graph) is the graph having the same set of nodes, and which
contains and edge between two nodes exactly when there was no edge in the original space.
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Figure 6.1: Axioms of semiorder

we assume that there exists an (unknown) function f : P — R expressing the measures
of objects (their masses, their preference rankings etc.). Our order relation simply gives a
partial sketch of this function, in the sense that we expect the following relation to hold:

r<y = f(r) < f(y)

This is a sort of soundness assumption of our measurement method: if we conclude
that z is lighter than y, then x is really lighter than y. Yet, assuming the converse is too
much: it would give us a weak order, which is too irrealistic at the light of our previous
considerations.

To solve this problem, Luce [Luc56] — motivated by the notion of threshold in psycho-
physics — suggested that the relation “smaller than” should be substituted by a stronger
relation like “sufficiently smaller than”; in other words, he assumed the existence of a
threshold value d > 0 such that:

T<y < f(z)+4< f(y).

The pair (f,0) is a representation for the poset (P, <). Of course, the value 4 is immaterial
here: any § would work equally well, by simply changing the scale f.

It is easy to show that any representable poset P satisfies the following axioms for all
z,Y, 2, w € P:

e Aziom Al. ifx <yand z < w then z < w or z < y;
e Aziom A2. if x <y < zthen z & w or z 4 w.

Fig. 6.1 gives a graphical representation of the two axioms, in the form of Hasse diagrams:
if the relations indicated by the full lines hold, then one of the dashed relations also holds
necessarily.
In Fig. 6.2 we present the axioms by showing an example of how they work in the presence
of a representation (here, each point z is represented by a closed interval on the real line,
ie., [f(z) — 0, f(z) + 4], and incomparability is determined by interval-overlapping).

A poset satisfying axiom Al is called an interval order; if it also satisifes axiom A2,
we say that it is a semiorder (see e.g. [Smi93, Fis85, Rob79]). So, representable posets
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Figure 6.2: Representation of the axioms on the real line

are semiorders; the converse fails in the general case (there are infinite semiorders which
have no representations), but holds in the finite case, as shown in the following well-known
result:

Theorem 6.2.1 (Scott-Suppes Representation Theorem [SS58]) If (P, <) is a fi-
nite semiorder, then there exists a function f : P — R s.t.

Vez,y € P.xz <y iff f(z)+1< f(y).

O

In the rest of this chapter, we shall mainly be interested in studying propertiers of a
special kind of semiorders (and thus also of the associated tolerance spaces): the strongly
noetherian ones.

Consider a poset (P, <); we say that P is noetherian® if and only if the relation > is
noetherian, i.e., iff there does not exist a sequence zg, x1, z2,... with

g >T1>To > ...

i.e., the relation < is a well-founded order. We say that P is strongly noetherian if and
only if, for all X C P:

e if X is a linearly ordered subposet and X has maximum, then X is finite.

It is straightforward to show that a strongly noetherian poset is noetherian as well, but
the converse is not true, not even for semiorders; for example, if you consider the ordinal
w + 1, ordered as usual, you will see that it is noetherian but not strongly noetherian
(Fig. 6.3).

An informal justification for the use of strongly noetherian semiorders is that in many
cases we consider magnitudes which are bounded below in their scales. For example,
this is the case of masses, where the scale is bounded by zero (negative masses are not
allowed), or also the case of temperatures (the absolute zero is the limit in this case). If
we restrict representations to have, say, non-negative values only, we shall surely obtain
strongly noetherian semiorders.

We shall now use the Scott-Suppes Theorem for proving a useful property of the
descending chains in a semiorder.

5The term conoetherian may be found instead.
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Figure 6.4: Proof of Property 6.2.1

Property 6.2.1 Let (P,<) be a semiorder, and consider two descending chains of the
form:
T=T9g>TT1>T2>...> Ty

T=Y>Y1>Y2>...>Ym

with m > 2n. There exists an index 1 = 1,... ,m such that
o cither x; > y; > xj1 for some j=0,...,n—1
® 01 T, > Y.

Proof: Let X = {z,z1,... ,Zn,Y1,--. ,Ym}; the restriction of < to X gives rise to a finite
semiorder, and so we can use Scott-Suppes Theorem to find a function f : X — R
representing X over the reals.

For each k =1,... ,nlet Iy = [f(zx) — 1, f(zg) + 1], and also let S = (—o0, f(z) — 1)
and T'= S\ Uy Ix. Observe that for each j = 1,... ,m, f(y;) € S (because y; < z =
f(yj) < f(z) —1). If for some j, f(y;) € T then either z; > y; > x4, for some k, or
zn > y; (see Fig. 6.4), as required.

By contradiction, suppose that no j satisfies f(y;) € T'. This means that

Vi=1,..., m3k=1,...,n. f(y;) € Iy

By the pigeonhole principle, there exists an index & such that I contains more than two
points: but if an interval of length 2 contains three points, two of them must have distance
at most 1, and so they should be indistinguishable; this is a contradiction (no two y;’s are
incomparable). O

Let (P, <) be a poset, and define, for each z € P, the set:

Clz)={z=z0>z1>...>25:n Ew}
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Figure 6.5: An unbounded set of descending chains

(the set of finite descending chains starting from z); let also

L(z) ={lh| - 1:7€C(x)}.

Observe that C(z) is closed by chain-prefixes, and L(z) is therefore a downward closed set
of natural numbers. So, either L(z) is finite or L(z) = w. The second case is possible even
when P is noetherian, because there might be infinitely many finite descending chains of
increasing length starting from a single element (see Fig. 6.5).

This is also possible in the case of a noetherian semiorder (see Fig. 6.3). Yet, we shall
prove in a moment that this is impossible in a strongly noetherian semiorder.

Lemma 6.2.1 Let (P,<) be a poset, and suppose that there exist in P the following
descending chains:

v = &)
7 = ag) > at
7(2) = :v(()Q) >x§2) >:1:g2)

© _ 1) _

where zy° = x; . = z, and moreover every element occurring in v*) also occurs
somewhere in k1) (for all k € w). Then P is not strongly noetherian.

Proof: Just let X = {xgj) :0<1i<j,j €w}. Of course, X is an infinite set, and moreover
@ .G"

it is linearly ordered. In fact, take z;”’,z;7 ’ and let k¥ = max{j,j'}. Then for some s, s’

we have: _ y
o) = o, o = o)

(k) (k)

But now zs’ and z,,’ are comparable (because they belong to the same chain). So X is
an infinite linearly ordered subset of P. But it contains a maximum element x, and so P
cannot be strongly noetherian. O

As a consequence, we obtain:



122 Tolerance spaces and semiorders
Theorem 6.2.2 Let (P, <) be a strongly noetherian semiorder. Then, for all z € P, L(z)
s a finite set of natural numbers, and we define:
h(z) = max L(z)
(the height” of ).

Proof: By contradiction, suppose that L(z) = w for some z. Then we find an infinite
sequence of longer and longer descending chains starting from z, say:

0
p© = 3;(() )
) a:(()l) > xgl)
1/)(2) = 1682) > m?) > :ng)

(0)

where z = 7’ = wgl) = .... Now, we inductively build a new sequence v¥) as follows.
We let:
0
7O =z,

Suppose that you have already built 49, ... (") and consider the two chains (") and
(2nt1) Using Property 6.2.1, we find a new element to “enrich” the chain ("), and thus
we can add it and obtain a longer chain 4("*Y. Now the sequence 79, ~() ... satisfies
the hypothesis of Lemma 6.2.1, and so P cannot be strongly noetherian: a contradiction.
O

Here are some easy facts about heights:

Property 6.2.2 Let (P,<) be a strongly noetherian semiorder. The following hold:
1. if z <y then h(z) < h(y);
2. if h(z) = n+ 1 then there exists y € P with h(y) =n and y < x;

3. there ezists some x such that h(z) = 0;
4. if h(z) = h(y) then x ~ y.

Proof: (1) Take any descending chain starting from z, say © = z9 > z1 > ... > z,. Then
Yy > x9 > X1 > ... > Ty 1S a descending chain starting from y having length n + 1. This
means that:

n€ L(z) = n+1¢€ L(y)

and so max L(z) < max L(y).

(2) If h(z) = n + 1 then there exists some chain of the form z = zy > 21 > ... > Z,41.
Take y = 1. Of course y < z, and h(y) > n (since n € L(y)). But y < x implies (using
(1)) that h(y) < h(z) =n+1, so h(y) = n.

(3) Simply use repeatedly (2) and the assumption that P # ().

(4) A consequence of (1). O

"This use of the word height is somehow non-standard; in the current literature, the height of an element
is defined only as far as all the maximal descending chains starting from that element have the same length
(the Jordan-Dedekind property).
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6.3 Cuts in strongly noetherian semiorders

One way to interpret the indifference relation of a tolerance space is to say that it expresses
a sort of “consistency” or “compatibility”: two points are in tolerance if and only if they
are compatible, i.e., if there is some chance for the real measure to satisfy both constraints
(intervals). Clearly, the maximal information one can get is obtained by gathering a
maximal set of pairwise compatible measures, i.e., a maximal clique of the tolerance space.
A maximal clique has indeed the role of a point in the measurement scale we are using.

If we are considering tolerance spaces induced by partial orders, the cliques corresponds
to maximal antichains in the order, which we shall from now on call cuts, using the
terminology introduced by Petri.

Formally, given a partial order (P, <), a cut (line) is a maximal set of pairwise incom-
parable (comparable) elements. In this section, we shall study the structure of cuts in a
strongly noetherian semiorder.

From now on, we let (P, <) be any fixed non-empty strongly noetherian semiorder,
and use h(z) to denote the height of . Moreover, for any X C P we write X" for

X"={zx € X :h(z) =n}.
Throughout the rest of this Chapter, we are assuming that:

Lemma 6.3.1 (Kuratowski’s Lemma) Each set of pairwise (in)comparable elements
is included in a line (cut, resp.).

Kelley [Kel55] observes that this is equivalent to the Axiom of Choice.
Note the following:

Property 6.3.1 If x ~ y then |h(z) — h(y)| < 1.

Proof: By contradiction, suppose that z ~ y with h(z) = n and h(y) = n+ k + 1 (with
k > 0). Using Property 6.2.2 (2) we find two elements y',y"” with ¢/ < ¢"” < y and
h(y') = n,h(y") = n+ k. But z ~ y' (because of Property 6.2.2 (4)) and so z < y: a
contradiction. O

Now, let Cp (Lp) be the set of all cuts (lines, resp.) of P. For each cut C € Cp, define:
h(C) = min{h(z) : z € C} (the height of C)
C={zeC:h(z)=h(C)} =CM (the lower part of C).

We have that:
Corollary 6.3.1 For every cut C
Vz € C. h(C) < h(z) < h(C) + 1.
Proof: Immediate from Property 6.3.1. O

So, if C is a cut of height n, then either all the elements of C' have height n, or C
contains some elements of height n and some elements of height n + 1 (and nothing else).
We call a cut C' horizontal in the first case, i.e., when

Vz € C. h(z) = h(C)

and vertical otherwise.
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Property 6.3.2 Let C be a cut:
1. if C is horizontal, then C = C = PM9);
2. if C is vertical, then C C C and C c PMC),

Proof: (1) The first equality is straightforward. For the second equality, the left-to-right
inclusion is obvious. Suppose that h(z) = h(C); then z is incomparable with every element
of C and so x € C.

(2) The first inclusion is proper by definition. For the second, suppose by contradiction
that C = {z € P : h(z) = h(C)}, and let y € C be any element of height i(C) + 1. Then
we find (Property 6.2.2) an element z with h(z) = h(C) such that z < y: which is clearly
impossible, since z,y € C. O

A consequence of the previous property is that, for each k, there exists at most one
horizontal cut of height k; also observe that two different horizontal cuts are disjoint.
Moreover:

Property 6.3.3 Any two vertical cuts of the same height are non-disjoint.

Proof: Let C1,Cs be any two vertical cuts of height n, and suppose C; N Co = (). Now take
any two 1 € C, 2 € Co of height n + 1. Since 1 ¢ Cs, there must exist some yo € Co
with yo < x1, and similarly Jy; € Ci. y1 < z9. But now either yo < zo or y1 < z1: both
cases lead to a contradiction. O

The following lemma establishes an important characterization of the intersection
among vertical cuts of the same height.

Lemma 6.3.2 Let C1,Co be two (different) vertical cuts of height n. Then, one of the
following holds:

e C7 C CF and Cy*H C O,

e Cp CCP and O c O+t
Proof: By Property 6.3.3, C1 N Cy # 0. Suppose first that both C"\ C% and C% \ C} are
non-empty, and let z € C7'\ C% and y € CF \ C7. Since z ¢ Oy, there exists 2’ € Cy
such that z < z', and similarly there exists ¢y’ € Cy such that y < y’. But these together

imply z < ' (which is impossible, since z,y’ € C1) or y < z’' (which is also impossible for
similar reasons). So we must conclude that:

a) either CT C C%
a’) or C3 C CT.
With the same kind of argument, we obtain:
b) either CT1 C CHH!
b)) or Cytt C Cn L.

Observe that a)+b) imply C; C C5, which is clearly impossible (as Cy,Co are cuts and
are different), and the same is true for a’)+b’). So the only other possibilities are those
listed in the thesis. U
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6.4 A consecutive linear order of cuts

The result of Lemma 6.3.2 is an important step towards our understanding of how the cuts
of a strongly noetherian semiorder are structured. To be more precise, we can construct a
sort of “dynamics” of cuts, which allows one to pass from one cut to another in a sort of
continuous way. Consider the horizontal cut of height 0 in a strongly noetherian semiorder,
as sketched in Fig. 6.6 (A). If we want to add some new element of height 1, we must
leave out some elements of height 0 (Fig. 6.6 (B)). We go on this way (cut (C)), until no
element of height 0 remains, and we reach the horizontal cut of height 1 (D). Then, the
process goes on like this starting from (D) and going upwards (E). The movement from
one cut to another is unique, as guaranteed by Lemma 6.3.2.
We can formalize this by considering the following relation on cuts:

C1 < Cy iff (h(Cy) = h(Cy) and C; D Cy) or h(Cy) < h(Cy).
A consequence of Lemma 6.3.2 is that:
Lemma 6.4.1 The relation < is a linear order.

Proof: 1t is straightforward to check that < is a partial order. Now, take any two cuts
C1,Cs. If h(Cy) # h(C2) then they are somehow <-related. If otherwise h(Ci) = h(C>)
then, by Lemma 6.3.2 either C; C Cy or the converse, and so we are done. O

As an example, consider the semiorder in Fig. 6.7. Here is a list of its cuts (their
numbering being arbitrary):

cuT TYPE | HEIGHT | LOWER PART
Ci ={a,b,c} horizontal 0 {a,b,c}

Cy ={a,d,e, f} | vertical 0 {a}

Cs ={a,d,e,c} | vertical 0 {a,c}
Cis=1{d, f,g} vertical 1 {d, f}

The ordering here is:
C1 < C5<Cy <Cy.
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Figure 6.7: A finite semiorder

A linear order < on Cp is consecutive if and only if
Cik(CyxCiandr e CiNCy = z € Oy,
i.e., the set of cuts including a certain element forms an interval in the order <.
Theorem 6.4.1 The relation < is a consecutive linear order.
Proof: Suppose that C; < Cy < C3 with x € C1 N C3. We distinguish four cases:
1. h(C1) = h(C2) = h(Cs) = n;
2. n=h(C1) < h(C2) = h(C3);
3. n = h(C1) = h(C2) < h(C3);
4. h(C1) < h(C2) < h(C3).

Case 1. We have C} C C% C C} and CI'™ c Oyt ¢ CFFL. If h(z) = n, then z € CF
and so z € C%. If h(x) = n + 1, then z € C?™! and so z € CH.

Case 2. In this case h(z) =n + 1, and C§™' C C3*!. But x € C3*! and so z € CI.
Case 8. In this case also h(z) = n+ 1, CF C CF and C7 C C¥*L. But z € CI'™! and
thus = € Cy+.

Case 4. This case is impossible, since then C; N C5 = (. O

The following table shows the intervals corresponding to the previous example (a cross
means that the element belongs to the cut):

Element | C; | C3 | Cq | C4

X X X

X
X X

Q= 0 a0 oS
»
i
i
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For all z € P, let Z, = {C € Cp : z € C}, and also
T2 = {C € T,.h(C) = n}.

We use the notation C7 < Cy for C; < Cy or Cy = Cs. The following Lemma shows that
I, is in fact a closed interval w.r.t. the relation <.

Lemma 6.4.2 For all x € P, there exist CL,CE € T, such that for all C € Cp we have:
reCiff Ck<C=<CE

Proof: We only show the existence of CL, and prove the left-to-right implication; the same
arguments determine the existence of CF, and the inverse implication is obtained by using
simply the consecutivity of <.

Let z have height n, and first observe that Z, contains cuts of height n — 1 and/or n. We
consider two cases.

First case. Suppose that no cuts of height n — 1 include z. Take:

cr=(J cmyu( .

CeL, CeZ,
and observe that:

1. z € CL, because z € C" for all C € Z,.

2. CL is a set of pairwise independent elements; the only non-trivial case is when
z € Ugez, C, ¥ € Necez, C™*t1. But this implies that z € C™ for some cut C
including z, and so z,y € C, which in turn implies z ~ y.

3. CL is a cut. By contradiction, suppose 3z & CL s.t. z ~ y for all y € CL. Since
z ~ x we have that h(z) € {n —1,n,n + 1}. We distinguish these three cases:

e if h(z) = n — 1, then {z, 2z} can be extended to a cut of height n — 1 including
x, which contradicts our first hypothesis;

o if h(z) = n, then {z,z} can be extended to a cut C € Z, containing z, and so
z € CL, a contradiction;

o if h(z) =n+1, take any C € Z,. Now z ~ y for all y € C", and so z € C.
Thus z € CL, a contradiction.

4. Tt is straightforward to verify that CL < C for all C € Z,.

Second case. Suppose that some cut of height n — 1 contains z. Let:

cr=( U cvhHu( N M.

cezr! cezr !
and observe that:

1. z € CL, because z € C™ for all C € Z,.

2. CL is a set of pairwise independent elements (straightforward).
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3. CL is a cut. Take a z as before:

e if h(z) = n—1, then {r, z} can be extended to a cut including z, and so z € CL,
a contradiction;

e if h(z) = n, then take any cut C € Z"~!. We have that z ~ y for all y € C"~!,
and so z € C. Thus z € CL, a contradiction;

e the case h(z) =n + 1 is impossible, since [J; -1 C™~! is non-empty.

4. Tt is immediate to verify that CL < C for all C € Z,. O

The following lemma gives a useful characterization of the order relation < in terms
of the ordering < among cuts.

Lemma 6.4.3 For all x,y € P, we have:
<y iff CF<Cy.
Proof: = In virtue of Corollary 6.3.1, if the cut C' contains z then
h(z) > h(C) > h(z) — 1,

and so
h(Cy) > h(y) —1> h(z) > h(CS).

If h(CyL) > h(CRE) the result is immediate. Suppose that h(Cj) = h(CE) = n. We have
three cases:

o if CF = Cgf then = ~ y: a contradiction;

o if CF < CF then (CF)" D (CE)™ and (CL)™*! c (CF)™*. Observe that h(z) =n
and h(y) =n+1;s0 z € (CE)" C Cgf and thus z ~ y: a contradiction;

e the only possible case is thus CE < C'yL.

<= There is no cut including both z and y, and so z # y. If it were y < z, by the first
part of this proof, we would obtain Cgfz < CL and so Cgf < CE, which contradicts the
hypothesis. O

Define the following relations:

z<ry iff sz%C;’
z<gpy iff C’f—<()§ﬁ

Observe that:

Property 6.4.1 The relations <r,<p are weak orders.



6.5. The structure of lines 129

Proof: We prove this for <z, only (the proof for <p is analogous). It is trivial to show that
<[, is a partial order. Moreover, we have:

r~Ly <= zfpyandyLLz
< CLACrandC) £C}
— Cf=cy.
So ~j, is transitive. O

We shall now give a different characterization of <p and <p.

Lemma 6.4.4 1. z<pyifand only if Jz.x ~ 2z < y;
2. x <pyifand only if Jz.x < z ~ y.

Proof: (We prove only 1) <= Using Lemma 6.4.3, from z < y we obtain CF < Cgf. But
T ~ z implies that there exists a cut including both z and z, and so CL < CE. So
CcL < CyL and thus z <z, y.

= Observe that CZ\C] # 0 (if it were CF'\CL = () then either CF = CL, contradicting
cLt < CyL, or Cgf C CL, contradicting the fact that CL is a cut). Take any z € CL\ Cgf.
Of course z ~ x; moreover Cf < CyL , since otherwise z € CyL . So z < y as required. O

6.5 The structure of lines

The results obtained so far allow us to prove some other interesting properties of the
relation <. We will show that (Cp, <) contains a least element, and also a maximum
whenever P contains a maximal element. Recall that an element z € P is called minimal
(maximal) if and only if there is no y such that y < z (z < y, respectively).

Observe that equivalently, an element is minimal precisely when its height is zero, and
Property 6.2.2 (3) can be restated by saying that (at least) one minimal element always
exists.

Property 6.5.1 If z and z' are two minimal elements, then CL = Cf,. Moreover, if we
let Crin = Ccf (for any minimal element x), we have that Cpin is the least cut w.r.t. <.

Proof: The first part is straightforward: in fact, suppose for example that CL < C'f,. Then
z <r, 2" and so, by Lemma 6.4.4, z ~ z < ' for some z, which contradicts the minimality
of z'. Now, take any cut C, and suppose by contradiction that C' < CL. Let y be any
element of C. We would have:

Cy2C=<Cl = y<gaw
and so (Lemma 6.4.4) y ~ z < x for some z, which contradicts the minimality of z. O

With the same technique, one could easily prove that:

Property 6.5.2 Suppose that P contains at least one mazimal element. Then, for any
two mazimal elements x and z', we have CF = Cﬁ. Moreover, if we let Coyax = CE (for
any mazimal x), then Cyax is the mazimum cut w.r.t. <. O
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We shall now consider some properties of the lines in a strongly noetherian semiorder.
As usual, we define the covering relation < as follows:

r<y iff z<yand Az.z<z<uy.

Of course, the transitive closure <* of the covering relation is included in <, but the
converse does not hold in the general case: e.g., if you consider the poset (Q, <), the
covering relation is empty ... Nevertheless, in the case of strongly noetherian posets the
two relations actually coincide.

Lemma 6.5.1 The transitive closure of < coincides with < in the case of a strongly
noetherian poset®.

Proof: Suppose that z < y. If x <y we are done; otherwise, take any line L including both
z and y, and consider:
A={z:ze Lz <z<y}.

Since A is totally ordered and has a maximum, A is finite (because P is strongly noeth-
erian), say A = {z = 20 < 21 < ... < 2z, = y}. Moreover z; < z;+1 are really covering
relations, as one can easily verify. So we have that x <* y as required. O

Now, one easily sees that a line L in a strongly noetherian poset can be one of two
kinds:

1. a sequence of the form L = {zg < z1 < ... < z,}, where zy is minimal and z, is
maximal;

2. an infinite sequence of the form L = {z¢ <z < ...} where z( is minimal.

Also notice that all the sequences in a certain semiorder will be of the same kind.

6.6 Connectedness and K-density

Before going on with our formal treatment of semiorders, we want to stop and return for
a moment to the example of Section 5.1. Most of us would prefer a cup with one spoon
of sugar (say 5 grams) to a cup with five spoons; yet, if we use ¢, to denote a cup with «
grams of sugar, we would certainly be indifferent between c, and c411/100- So:

C5 ~ C5.001 ™~ C5.002 ~~ -+ ™~ €24.999 ~ C25

but still c5 is not indifferent from co5. We can pass from cj to co5 through an “indifference”
chain, i.e., a chain of pairwise indifferent objects. This resembles the classical notion of
continuum developed in mathematics; as Brouwer says (quoted by Weyl in [Wey49)),
speaking about continua,

The separateness of two places, upon moving them toward each other, slowly
and in vague gradation passes over into indiscernibility.

8This property is usually called “combinatoriality”.
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The fact that we can move from one object to another object distinguishable from the
former through a chain of indistinguishable elements is one of the typical paradoxes of
continuum (as Russell [Rus37] says, the arrow, at every moment of flight, is truly at rest).
What is strange and peculiar, here, is the fact that our indifference chain is finite, which
hurts the common sense, as Borel [Bor46] states:

Une ligne droite apparait ainsi comme une suite continue de points, sans aucun
vide, que l'on ne peut parcourir qu’en passant successivement par tous les
points, dont le nombre est nécessairement infini, car un nombre fini de points,
si grand qu’il soit, laisserait nécessairement des intervalles vides séparant ces
points.

Yet, Petri [Pet96] observes that Poincaré, Weyl, Dirac et al. have pointed out how,
ideally, the mathematics of physical theory should be “combinatorial”, which should not be
misunderstood as implying “discrete”: as a matter of fact, one can think of discrete, or even
finite, mathematical structures which exhibit a continuous behaviour, and Petri asserts
that this assumption is fully compatible with the mathematical view that the continuum
of real numbers can and should be chosen as [the paradigm for continua/. The problem
of filling the gap between discrete and continuous models has been extensively studied,
bearing to a hierarchy of possible solutions (see [Pet80b]).

Coming back to our measurement problem, our current purpose is then to design a
system by which measurement can be achieved in a continuous fashion. In other words, we
want to set up a family of reference measurands in such a way that the resolution power of
our measuring tools is exploited. A way to do this is to assume that any two measurands
are joined by an indifference chain, witnessing the fact that no gap exists between their
measures; in fact, as Smith [Smi93] shows, this is a sufficient condition for obtaining that
any given measurand (within a certain range) is matched by one of the references.

This condition on semiorders is called connectedness?; a poset (P, <) is connected if
and only if ~*= P? (where ~* denotes as usual the transitive closure of ~). In other
words, there exists an indifference chain between any two elements of P, or equivalently
the associated tolerance space is a connected graph.

Connectedness in a strongly noetherian semiorder turns out to be equivalent to a
property of “continuity” in the dynamics of cuts. In practice, a semiorder is connected if
and only if we never have to “jump over a gap” when moving from a cut to the subsequent
one, in a way which is made precise by the following theorem.

Theorem 6.6.1 Let (P, <) be a strongly noetherian semiorder. The following are equi-
valent:

(i) P is connected;

(’I,Z) f07" all 01,02 €Cp
C1 =Cy implies C1 N Co # 0;

In [Bol96] we used the word “coherence” instead; although this is the term used in measurement theory
and social sciences, we have preferred to adopt another name here, not to clash with the use of the word
“coherent” in domain theory, see Chapter 3.
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Figure 6.8: (a) A disconnected and (b) a connected semiorder

(iii) for all n < np = sup{h(x),z € P}, there exists a vertical cut of height n.

Proof: (i) = (ii) Suppose that C; <Cs and C; N Cy = (). Then we have that:
Claim:

1. if z € C1 and z ~* 2z then C'ij'l;
2. ify € Cy and y ~* z then Cy < C’ZL.

Proof of Claim: (Only part 1) By induction on the length of the indifference
chain; if z = z then CF = (1.

If z ~* w ~ 2z then, by induction hypothesis CZ¥ < C;. Since w ~ z we have
CL < CE 1f it were C; < CE then Cy < CF and so, since CLX < CE < ¢y <
Cy < Cf we would have z € C; N Cy. Thus Cf < C4 Q.E.D. Claim

Now let x € C1,y € Cs. If x ~* y then, by the Claim, Cf < C; and Cy < C% and so
Cf < CIL. But CIL = (1, Cf = (9 and so Cy < C: a contradiction.

(ii) = (iii) Suppose by contradiction that no vertical cut of height m < np exists. Let
Cy = P™*1; of course Cy is non empty (since m + 1 < np) and moreover Cs is a cut: if
there was a z € Cs such that z is incomparable with any element of Cs, then h(z) = m
and we would find a vertical cut of height m. Now let C; be any cut extending P™ (only
one such cut exists, actually). Since C5 is the first cut of height m + 1, we have C; <Cy;
but C; N C2 = (), which contradicts (ii).

(iii) = (i) If (iii) holds, for all n < mp there exist two elements z,,y, € P s.t.
h(zn) = n,h(yn) = n+1 and z, ~ y,. Let z,y € P with h(z) = p < h(y) = ¢, and
consider the sequence x,z,,¥p,... ,Tq 1,Y¢-1,y- Using the hypothesis, we have that this
is a (finite) indifference chain. O

We have introduced connectedness as a desirable property of our measuring system,
and shown how this is equivalent to a property of continuity in the structure of cuts.
Fig. 6.8 (a) shows a non-connected semiorder with a “gap” between two subsequent cuts
(in fact {z} N {y} = 0); in Fig. 6.8 (b) we have no gaps (in fact {z,z} <-{z,y} and
{z,z} N{z,y} = {z}), and the semiorder is therefore connected, as one easily verifies.

Even though everyone agrees about the necessity of a notion like connectedness for a
semiorder to be “continuous”, connectedness is hardly enough for having all the desirable
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properties of a continuum stored in our discrete setting. Another requirement is that
known as K-density [Smi93, Pet96], a term coming after Petri’s work on the study of
concurrent processes.

In order to motivate K-density as a basic property of continuous structures, we want
to recall briefly Carnap’s work on the axiomatization of space-time topology [Car58].

Carnap develops an axiom system for treating the motions of (idealized, unextended)
physical particles; he takes as individuals the moments of particles (called world-points)
each assigned to a space-time point. The set of all world-points of a particle is called a
world-line, and it is totally ordered by a relation which is interpreted as “being earlier
than”, a local time order. For taking into account the interaction between particles, a
coincidence relation is defined among world-points: two world-points coincide when they
are assigned the same space-time position.

This, together with the local ordering on world-lines, induces a partial order S on
the set of world-points, which can be interpreted as the possibility for an effect to reach
a world-point from another. Now, in this partial order, the incomparability relation I
determines the simultaneity of world-points, in the sense of Reichenbach, which defines
two world-point simultaneous if and only if no signal can ever go from one to the other.

Now, a maximal antichain (cut, in our terminology) of S is what Carnap calls a space,
“a three-dimensional cross section of the four-dimensional space-time world, the sectioning
being done across the time direction” [Car58]. Similarly, a maximal chain (line) of S is
a signal line in the sense of Carnap, and determines the evolution of a process in the
space-time world. What one should require for time to be continuous is that each single
particle is somewhere in each moment, which is formalized as the assumption that each
signal line intersects each space in (exactly) one point©.

This property is known as K-density; more formally, a poset (P, <) is K-dense iff
VL e LpVC € Cp. LN C £ 0.

As far as measurement is concerned, K-density is a property related to the granularity
of the set of reference measurands [Smi93]. K-dense posets (also known as chain-antichain-
complete posets) are also a well-studied subject of the combinatorial theory of orders
[Gri69, LM73, EZZ86, Riv86].

An interesting characterization can be given for K-density in the case of strongly
noetherian semiorders: it turns out that K-dense semiorders are precisely those where the
covering relation is reflected in the ordering of cuts.

Theorem 6.6.2 Let (P, <) be a strongly noetherian semiorder. The following are equi-
valent.

(i) P is K-dense;
(ii) for all z,y € P, x <y implies CE -<-C’yL.

Proof: (i) = (ii) Suppose that z <y and CF < C < C[. Let now L be any line with
x,y € L; the set of cuts which are intersected by L is:

T = U'UIEL[Cqﬁa Og]

10This is axiom 48.D6 of [Car58].
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Figure 6.9: An N-shaped poset (the sloping line is a covering relation)

where [C1,Cs] = {C : C; X C <X Cs}. P is K-dense, and so T' = Cp; in particular C € T,
i.e. there exists a z € L such that CL' < C < CE. If we had CE < CF and CF < CyL,
then we would have = < z < y contradicting « < y. So it must be:

ctzxcforcl=ck

But CL' < CE < C < CF implies z ~ z, and the other case leads similarly to y ~ z: both
cases are impossible since L is a line.

(ii) = (i) Straightforward, for the characterization of the lines in a strongly noetherian
poset. O

The above result allows us to obtain a local condition which is equivalent to K-
density for strongly noetherian semiorders. If (P, <) is a poset, an N of P is a quadruple
z,y, 2,y € Psuch that z <y,z < z',9' < y and no other pair is comparable; the simplest
poset containing an N is that represented in Fig. 6.9, which explains the name “N”.

The cut formed by the circled elements does not intersect the line {z’,y}. The following
property, which is a corollary to the previous theorem, states that N-freeness is equivalent
to K-density in the case of strongly noetherian semiorders.

Property 6.6.1 A strongly noetherian semiorder is K-dense iff it is N-free.

Proof: Suppose that (P, <) is not K-dense: we will find an N in P. Using Theorem 6.6.2,
we find z,y € P such that z <y and CE < C < CyL for some C. Now z,y € C and so
there exist z’,y’ € C such that z £ z’,y # v/, and of course we shall have z < z’,7' < y.
Also z' ~ 4/ (since ',y belong to the same cut). Moreover z’' ~ y (if 2’ £ y, then 2’ <y
which in turn implies z < z’ < y, contradicting z < y) and similarly z ~ 3. So z,y, ',
is an N of P. O



Chapter 7

Conclusions and further work

The original motivation for our work was a reconstruction from below of Petri’s axiomat-
ization of concurrency. Clearly, the results presented here are just the first step towards
this goal. Here are some research directions which are left open by this thesis; some of
these topics will be hopefully covered, at least in part, in the final version.

e Universal constructions. We think that the general techniques used here to give an

explicit deterministic construction for many sorts of representations (Section 4.3) can
be further generalized, e.g., in order to obtain a universal homogeneous general event
structure (although, in that case, the associated domain could not be homogeneous,
because of the negative results of [DG93]). The same can be done also for the
probabilistic constructions of Section 4.6. An interesting open question related to
the universal constructions is whether the universal dI-domain (coherent dI-domain)
obtained in Corollary 4.3.4 (Theorem 4.5.5, respectively) is homogeneous; if the
answer to this question is negative, we could wonder whether it is possible to use
the same number-theoretic techniques for obtaining directly a homogeneous domain,
rather than working on representations.
An important, and probably difficult, question is whether it is possible to have
suitable universal constructions also for some full subcategories of TolSp, e.g., for
the subcategory of all tolerance spaces induced by partial orders (interval orders,
semiorders ... ). This problem is likely to require some additional special techniques,
because those categories are not algebroidal anymore, and so saturation cannot be
applied (at least, not in a direct way).

o Approxzimation techniques. The idea of approximating topological spaces by using
two (inverse) limits (one in the category of tolerance spaces, and the other in the
category of topological spaces) is still in the early stages. We believe it may be
given a more systematic setting, but at present it is nothing more than a temptative
technique, even though the results obtained so far are promising. We also believe
that relating such approaches with other similar ones proposed in the literature (see,
e.g., [Smy92],[Stin95]) could be very fruitful in order to refine our constructions.
Also, a comparison with [Smy95] would be interesting, although the results in that
paper are obtained in a different setting, and this makes it difficult to appreciate the
similarities with ours.

135
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e Stone duality and approzimation sequences. An interesting open problem is to char-
acterize those topological spaces which are (homeomorphic to) the reduced limit of
a discretely topologized approximation sequence of finite tolerance spaces (we have
presented some examples of such spaces in Sections 5.7, 5.8 and 5.9). A clue for solv-
ing this problem is offered by the well-known Stone duality, which could be expressed
(as Smyth suggests [Smy92][Proposition 5.0.18]) as follows: a second-countable space
is a Stone space if and only if it is the inverse limit (in the category Top) of a sequence
of discrete finite spaces. Thus, approximable spaces are just “special” quotients of
second-countable Stone spaces.

A related open problem is to characterize the topological spaces which can be ob-
tained as a limit of an effectively presentable approximation sequence. This question
is clearly central if we aim at applying our results in a computational setting.

e Generalizations of semiorders. The study of tolerance spaces induced by semiorders
could be probably generalized in various ways, for example by considering different
kinds of orders (ranging from the n-semiorders [Bog82], to interval orders [Fis85],
up to general partial orders); probably, this would result in very interesting charac-
terizations of chains and antichains (cliques and independent sets) for large classes
of tolerance spaces induced by partial orders.

o Applications to concurrency theory. Another serious drawback with semiorders is
that many posets occurring in physics and in control theory, which can be used to
denote measuring scales, are not semiorders. Two examples are represented by the
so-called time orthoids (defined by Petri [Pet96]), which can be used as a concrete
image of the ticking of a clock, and by the combinatorial continuum with inner
points only, defined in [PS87]. Moreover, if one wants to apply combinatorial results
to control and concurrency theory, the notion of poset is too restrictive because it
does not allow cyclicity to be taken into account. In this case, cyclic structures like
those defined in [Pet80a] should be considered: a cyclic structure is defined by means
of a quaternary separation relation, similar to that used in projective geometry. A
generalization in this direction of the results obtained in Chapter 6 is desirable, but
it requires a more thorough understanding of the relations existing among cyclic
orders and posets.

Finally, on a more philosophical side, we would be interested in pursuing the theme of
this thesis up to gaining a more thorough understanding of Petri’s ideas on finite models
for continuous phenomena, perhaps also in the light of the contributions of A.W. Holt
[Hol80, Hol74b, Hol74a).



Appendix A

Background

A.1 Category theory

We introduce the fundamental notions of category theory used in this thesis; most of them
are quite standard, and can be found in any textbook of categories, like [Mac71].
A category C is defined by the following data:

e a class Obj(C) of objects;

a class Arr(C) of arrows (or morphisms);

e two maps dom, cod : Arr(C) — Obj(C), giving, for each arrow f of C, two objects,
called the domain and codomain of f; we write f : A —¢ B to mean that f is an
arrow of C with domain A and codomain B (the subscript is omitted whenever it
can be deduced from the context);

e a partial composition o : Arr(C) x Arr(C) — Arr(C), satisfying the following con-
straints: fog is defined if and only if cod(g) = dom(f); moreover, (fog)oh = fo(goh)
whenever both sides are defined;

e for each A € Obj(C), there is an arrow 14 : A —¢ A such that, for any arrow f (g)
of C with domain (codomain) A, it holds that foly = f (1409 = g).

There are many examples of categories; here we list some of them:

e Set: the category of sets, with functions as arrows, and with composition interpreted
as the standard function composition;

e Mon: the category of monoids, with monoid morphisms as arrows, and with the
usual function composition;

e Top: the category of topological spaces, with continuous functions as arrows.

All these categories are large, in the sense that their object class is a proper class and
not a set; in many other cases, both objects and arrows form a set, and then we speak of
small categories. As an example, every preordered set P, with preorder C, can be seen
as a small category whose objects are simply the elements of P, and with an arrow from
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A to B if and only if A T B. An object A € Obj(C) is weakly initial iff for any object B
there is an arrow from B to A. Clearly, in the case of a category representing a poset, a
weakly initial! object is simply the minimum.

For each two objects A, B € Obj(C), we let Hom¢(A, B) be the class of arrows from
A to B. A subcategory of C is a category D whose objects (arrows) are a subclass of
those of C, with domain, codomain, compositions and identities defined by restricting the
corresponding data of C. We say that the subcategory is full if, for every A, B € Obj(D)
we have Homp(A, B) = Hom¢ (A, B) (i.e., if we look at a category as simply a directed
graph, D is an induced subgraph of C). An arrow f: A —¢ B is

e an isomorphism if there exists an arrow ¢ : B —¢ A such that go f = 14 and
f o g =1p; in this case, we say that A and B are isomorphic, and write A = B;

e monic if, for any two arrows g,h : C —¢ A, if fog= foh then g = h;
e epi if, for any two arrows g,h: B —¢ C,if go f = ho f then g = h.

The skeleton of C is the set of equivalence classes of objects of C w.r.t. isomorphism, i.e.,

Obj(C)/ =.

Let C,D be two categories; a functor F' : C — D maps objects of C to objects of D,
and arrows of C to arrows of D, in such a way that:

e for all f € Arr(C) we have dom(F(f)) = F(dom(f)) and cod(F(f)) = F(cod(f));
e for all A € Obj(C) we have F(14) = 1p(4);
o if f:A—¢cBandg:B —¢ C then F(go f) = F(g) o F(f).

In particular, for any category C, one can define the identity functor 1¢ : C — C which
acts as the identity both on objects and on arrows. Clearly, we can compose functors
by composing their object- and arrow-component separately; thus, we obtain a (large)
category, whose objects are all small categories, and whose arrows are functors, with the
just defined functor composition (this category is usually denoted by Cat).

A functor F : C — D is said to be full iff for every pair ¢, € Obj(C) and every arrow
g : F(c) »p F(c), there is an arrow f : ¢ —¢ ¢ such that g = F(f). It is faithful iff for
every pair ¢,c € Obj(C) and every two arrows f,g:c —¢ ¢, if F(f) = F(g) then f = g.

Let now F,G : C — D be two functors; a natural transformation 7 : F = G is a

function which assigns, to each object ¢ of C, an arrow 7. : F(c) —p G(c) such that, for
every arrow f : ¢ —¢ c, the following diagram is commutative?:

'In this case, really an initial object.
2This means that, for any two paths in the diagram having the same starting node and the same ending
node, the strings of compositions obtained on the two paths are equal.
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The arrows of D which are in the image of 7 are called the components of the transform-
ation; we say that the transformation is a natural isomorphism, and write 7 : F' = G, or
simply F' 2 @, if every component is an isomorphism.

Given two categories C and D, we say that they are equivalent if there exist two functors
F:C—>Dand G:D — C such that Go F = 1; and F o G = 1p. It is folklore that

Remark A.1.1 Let ® be a statement which can be expressed using only categorical no-
tions; if ® holds for the category C, and if D is equivalent to C, then the statement also
holds for D. Moreover, if the statement implies the existence of an object (arrow) A (f,
resp.) of C satisfying certain properties, and if the equivalence between C and D is given
by the two functors F : C — D and G : D — C, then F(A) (F(f), resp.) is an object
(arrow, resp.) of D satisfying the same properties.

This remark was used implicitly in the proof of existence of the universal homogeneous
(atomic, coherent) dI-domain, in Chapter 4. The following well-known result is often used
to prove categorical equivalence:

Theorem A.1.1 (MacLane [Mac71], Theorem IV.4.1) The following properties of
a functor F': C = D are equivalent:

1. F gives an equivalence of categories;

2. F is full and faithful, and each object d € Obj(D) is isomorphic to F(c) for some
object ¢ of C. O

An w-chain [DGI3], in a category C, is a sequence® (A;, fi)icw Where each 4; is an
object of C, and f; : A; —¢ Aiy1 is an arrow of C. The colimit (or direct limit) of such a
chain is given by an object A and a sequence of arrows 1; : A; —¢ A, such that

1. for every i € w, we have f; o 1; = 111 (a sequence satisfying this requirement is
usually called a cone);

2. if B is an object of C, with a cone ¢; : A; —¢, there is a unique arrow h : A - B
such that h o ¢; = ;.

The first part of this definition can be sketched by the following commutative diagram:

Aq fo A fi Ay P Ag---
wf p e
A

It is clear that the colimit is unique up to isomorphisms, if it exists, and we write A =
Iﬂ}(Ai, fi)- If C represents (the categorical version of) a partially ordered set, an w-chain
is interpreted as a standard ascending countable chain, and its colimit (if it exists) is the
least upper-bound.

30r, equivalently, a functor F : w — C, where w is considered as (the categorical representation of) the
poset of natural numbers.
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Conversely, an w-cochain in a category C, is a sequence® (4;, f;)ic, Where each A; is
an object of C, and f; : A;y1 —¢ A; is an arrow of C. The limit (or inverse limit) of such
a chain is given by an object A and a sequence of arrows (called the cone) 1; : A —¢ A;,
such that

1. for every 7 € w, we have f; o ;11 = 9;;

2. if B is an object of C, with a cone ¢; : B —¢ A; satisfying the previous statement,
then there is a unique arrow h : B — A such that 1; o h = ¢;.

Also, the limit is unique up to isomorphisms, if it exists, and we write A = Lim(Ai, fi)-
In the case of posets, an w-cochain is a countable descending chain, and its limit is the
greatest lower bound.

An object B in a category C is finite (according to [DG93]) if, whenever (A4;, fi)icw
is an w-chain with Iﬂ(Az’fz) = A and with cone 9; : A; - A, and g: B — A is an
arrow, there exists an index n such that there is a unique arrow h : B — A,, satisfying
that g = ¥ o h. Diagrammatically:

Ag Lo Ay s a, P25 4, A,
wolyZ '¢’n

A A

Tg

B

The full subcategory of finite objects is denoted by Cj.

A.2 Measure theory

We introduce here the very basic notions of (abstract) measure theory we used in this
thesis; the notation and definitions are standard, and we refer to [Do094] for more on this
topic.

A family A of subsets of a set X is called a o-algebra on X if it satisfies the following
constraints:

1. X e A

2. if M € A then also M© € A (the complement being taken with respect to the whole
set X);

3. if S C A is a countable set, then also US € A.

In other words, a o-algebra contains the whole set, and it is closed with respect to com-
plements and countable unions. The pair (X, A) is often called measure space, and the
elements of A are called measurable sets.

Here are some properties of a measure space (X, A):

40r, equivalently, a functor F : w®? — C, where w°? is like w but with all arrows reversed.
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e the empty set is measurable, i.e., ) € A;

e A is closed under (finite and) countable unions and intersections; i.e., if S C A is
(finite or) countable, then US € A and NS € A;

e A is closed under set-difference (i.e., if M;, My € A then also M; \ Mz € A).

Two measurable sets M, My € A are orthogonal if and only if M; N My = (. The
following property states that every countable limit of measurable sets can always be
expressed as a limit of pairwise orthogonal measurable sets.

Property A.2.1 Let (Ap)necw be a sequence of measurable sets in the measure space
(X,A). Then, there is a sequence (Bp)new of measurable sets such that

® UncwAn = UnewBn;
e for alln € w we have B, C Ay;
e for alln,m € w (n # m) the sets By, and By, are orthogonal.

Proof: (Sketch) Just take B, = Ap \ (Ag U A1 U...UA,_1). O

Here is an easy, but important, property of o-algebras:

Lemma A.2.1 Let A be a non-empty set of o-algebras on X. Then NA is a o-algebra
on X. O

As a consequence, we have:

Corollary A.2.1 Let F C p(X) be a set of subsets of X; then, there exists a o-algebra
Axr on X such that F C Ar and moreover, if A is a o-algebra on X such that F C A,
then also Axr C A.

Proof: Let A = {A : A is a o-algebra on X, and F C A} and define Ay = NA. This is
still a o-algebra, by Lemma A.2.1. O

The o-algebra Az is called the “o-algebra generated by F”, and it is in practice the
least o-algebra containing all the elements of F as measurable sets.

A (positive) measure on the measure space (X, A) is a function x4 : A - RU {oo} such
that

1. for all M € A, u(M) > 0;

2. if (Ap)new is a sequence of pairwise orthogonal measurable sets, then

#(Unewdn) = Z 1(An);

necw

3. there exists an M € A such that u(M) < co.
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We say that p is normalized (or: “a probability measure”) iff ;(X) = 1. The following
proposition gives the main property of measure functions:

Proposition A.2.1 Let (X,A) be a measure space, with measure p. Then
1. p(®) =0;
2. ’tf Ml,MQ € A and M, C MQ, then N(Ml) < /,L(MQ);

3. if (Ap)new i a sequence of measurable sets, then

N(UnEwAn) < Z N(An);

new
4. if (Ap)new 18 a sequence of measurable sets with A, C Apy1, then

U(UnEwAn) = nli)ngo N(An);

5. if (Ap)new s a sequence of measurable sets with Ap+1 C A,, then

(MnewAn) = nli)ngo 1(An);

6. if u is normalized, and M € A, then u(M®) = 1 — u(M);

7. if (Ap)new s a sequence of measurable sets with u(A,) =0 for all n € w, then also
p(UnewArn) = 0; i.e., a countable union of sets of measure zero still has measure
zero.

Proof: See [D0094]. O

One last point which needs to be explained is independence. If x4 is a (normalized)
measure on (X, A), and A, B € A, we say that A, B are (u)-independent iff u(A N B) =

u(A)p(B).
A.3 General topology

We introduce here the fundamentals of general (point-set) topology used in this thesis;
some more specific topics are introduced directly in the text. For more information on
this subject, we refer the reader to [Gaa64].

A topology on a set X is a family Q C p(X) of subsets of X such that
1. e Qand X € Q;
2. if 01,049 € 2, then also O1 N Oy € §;

3. if (O; € Q)jer, then also U;c10; € Q.



A.3. General topology 143

In other words, a topology is a family of sets which contains the empty set, the whole set
(universe), and is closed under finite intersections and arbitrary unions. The elements of
Q are called open sets, and the pair (X, Q) is often called a topological space. Often, when
speaking of a topological space (X, ), we simply use the letter X and leave the topology
Q2 unspecified (when no confusion may arise).

Note that one can order the topologies on a set X by set-inclusion; if Q1 C Q9 are
two topologies on X, we often say that )y is weaker (or coarser) than {2y, and that Qs is
stronger (or finer) than ;. Clearly, there is one weakest topology on X, which is {0, X'}
(called the indiscrete, or non-discrete, one), and one strongest topology, which is p(X)
(called the discrete one).

A set C C X is closed iff its complement CC is open. Note that (), X are closed sets,
and that finite unions and arbitrary intersections of closed sets are also closed. A set which
is both open and closed is sometimes called clopen () and X are the trivial clopen sets).

Here are some very basic definitions of general topology; let (X, ) be a topological
space, and A C X:

e the interior of A is the biggest open set contained in A, i.e.,

Int(A) =U{0O € Q:0 C A};

e the closure of A is the smallest closed set containing A, i.e.,

A=n{C:ACC,Ccq};

e the border of A is the set of points which are contained in the closure of A but not
in its interior, i.e.,

Bd(A) = A\ Int(A);
e the exterior of A is the interior of its complement, i.e., Ext(A) = Int(A);

e a point z € X is an accumulation point of A iff every open set containing = contains
at least one point of A different from x; the set of all accumulation points of A (often
called the “derived set”) is denoted by 0A.

One usual way of determining a topology on a set X is the following. Let B C p(X)
be a family of subsets of X such that:

1. for all z € X, there is a B € B such that x € B;
2. if By, By € B and z € By N By, then there is a B € B such that z € B C B; N Bs.

The family B is called a base (if it satisfies only axiom (1), we call it a subbase).

Then, let 2 be the set of subsets of X which are unions of elements of B: this is
actually a topology, called the “topology generated by the base B”. It is indeed the
weakest topology including B. In the case of a subbase, we must consider first the base
obtained by taking the finite intersections of the elements of the subbase, and then generate
the topology from this base.
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Using (sub)bases for defining topologies is a very useful way of describing topological
spaces. One important example is the following: for any two real numbers a,b € R, with
a < b, let (a,b) denote the open interval with extreme a and b (i.e., the set {r e R: a <
r < b}). The family of all such open intervals forms a base, and the generated topology
on R is called the Euclidean (or standard) topology of R.

Here is a necessary and sufficient condition for two bases to generate the same topology:

Theorem A.3.1 (Gaal [Gaa64], Theorem 1.4.1) Let X be a set, and B, B2 be two
bases on X. Let also Q; be the topology generated by B; (i = 1,2). Then $; is stronger
than Qo if and only if for all Bo € By and all © € B, there is a By € By such that
Tz € By C Bs. O

In particular, observe that €2, is stronger than Q9 whenever By C B;.

Given a topological space (X, (2), one can consider a subset Y C X; the set Qy =
{ONY :0 € N} is a topology on Y, called the subspace topology induced by Q on Y.

A function f : (X,Q) — (X',Q) is called open (closed) iff the image of each open
(closed, resp.) set is still an open (closed, resp.) set. It is (topologically) continuous iff the
counter-image of each open set is an open set (i.e., for all O’ € Q' one has f1(0') € Q).
In particular, a bijection which is continuous and has a continuous inverse is called a
homeomorphism.

The following Lemma is often used when proving that a certain function is continuous:

Lemma A.3.1 (Gaal [Gaa64], Exercise IV.3.1) Let f : X — X' be a function be-
tween topological spaces, and S be a subbase for the topology V. If f~1(S) is open for all
S €S8, then f is continuous. O

As a final point, we recall the definition of metric space. A pseudometric on a set X
is a function d : X x X — R* (the set of non-negative reals) such that

1. for all z € X, d(z,z) = 0;
2. for all z,y € X, d(z,y) = d(y, z);
3. for all z,y,z € X, d(z,y) + d(y,z) > d(z,z) (the triangle inequality).

We say that d is a metric if moreover d(z,y) = 0 always implies z = y. Finally, d is an
ultrametric if it is a metric and satisfies a stronger version of the triangle inequality, i.e.,

Vz,y,z € X. max{d(z,y),d(y, 2)} > d(z, z).

A (pseudo,ultra)metric space is a set X endowed with a (pseudo,ultra)metric d. Given a
pseudometric space (X,d), for every fixed z € X and every e > 0, one can consider the
open ball of center x and radius € defined by taking

Be(z) ={y € X : d(z,y) < €}.

The set B = {B.(z) : ¢ € X,e > 0} is a subbase for a topology €4 on X, which is called
the topology induced by the metric d.
In particular, it is easy to see that
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e a set A C X is open iff, for every z € A, there exists some ¢, > 0 such that
B, (z) C 4;

e a function f : (X,d) — (X',d') between pseudometric spaces is topologically con-
tinuous if, for every x € X and every € > 0, there exists a d; > 0 such that
f(Bs,.(x)) € Be(f(x)), which is the standard version of continuity used when deal-
ing with real numbers.

An alternative (equivalent) way to define the Euclidean topology on R (and, in general,
on its powers) is the following; for each n € w, define d,, : R* x R" — RT as follows:

dn(xy) = | > (@i — ).

=1

The function d, is a metric, and the topology induced on R" by d, is the standard
Euclidean topology; in particular, the topology of R induced by the function

dl(l‘,y) = |.Z‘ - y|

is the same as the one we have defined before by taking as subbase the set of (half-
unbounded) open intervals.
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